
Hitting the Target:  Adding Interaction Design to 
Agile Software Development 

Jeff Patton 
Development Team Leader 

Tomax Technologies 
224 South 200 West 

Salt Lake City, UT  84101 
USA 

1.801.924.6924 
jpatton@tomax.com 

 
 

ABSTRACT 
Extreme Programming appears to be a solution for discovering 
and meeting requirements faster (through close customer 
collaboration) as well as creating quality software.  In practice 
we found XP did deliver high quality software quickly, but the 
resulting product still failed to delight the customer.  Although 
the finished product should have been an exact fit, the actual 
end-user still ended up slogging through the system to 
accomplish necessary day-to-day work.  This paper describes 
using interaction design in an agile development process to 
resolve this issue.  Using interaction design as a day-to-day 
practice throughout an iterative development process helps our 
team at Tomax Technologies deliver high quality software, 
while feeling confident the resulting software will more likely 
meet end-user expectations. The method of Interaction Design 
followed here is based on Constantine and Lockwood’s Usage-
Centered Design.  Recommendations are provided on how to 
practice an agile form of U-CD and how to incorporate bits of 
Interaction Design thinking into every day development and 
product planning decisions. 

 
Keywords 
Agile Methodologies, Interaction Design, Usage-Centered 
Design, Extreme Programming, Requirements Gathering. 

 
1. INTRODUCTION 
This experience report discusses my discovery and incorporation 
of Constantine & Lockwood’s Usage-Centered Design [6] into 
the day to day work my team does to deliver high quality 
software.  

Summarizing observations of several projects in Reflective 
Systems Development [13], Mathaissen observed “Systems 
development methods were seldom, or only partially, followed 
by experienced practitioners.”  We were no exception.  Our 
current form of U-CD uses new skills taught by Larry 
Constantine & Lucy Lockwood.  In addition we’ve made several 
modifications to the process to accommodate time limitations, 
information limitations, and an iterative development 
environment.  The result is a situation specific “agile” form of 
U-CD that fits tightly into our team’s local methodology.   

When incorporated into an agile development process, the 
interaction design concepts in Usage-Centered Design pack a 
powerful 1-2 punch:  Agile development methods allowed us to 

deliver high quality software sooner, and interaction design 
concepts lent us the degree of end-user empathy we were 
missing to help increase confidence that we hit our target of end-
user satisfaction.  All this results in our team being more 
successful today than 2 years earlier.   

 

2. IDENTIFYING THE PROBLEM 
2.1 There Has to Be Better Way. 
I’ve spent years developing software “traditionally.”  Basically, 
this consisted of a blend of Waterfall Methodology and 
complete chaos.  I saw intelligent folks work very hard to 
identify requirements, create a thorough definition of scope and 
functional design, approve that, and then finally build it.  More 
often than not the resulting software would miss its target.  It 
was often late.  There were problems with quality – the software 
released with bugs.  But even with quality issues resolved, the 
resulting software was hard to understand and cumbersome to 
use.  It didn’t seem to be appropriate for the actual work the end-
users were trying to accomplish.  Requirements were often 
missed in the design phase, resulting in features necessary to 
automate the business process being left out of the software.  
Features originally thought important during the design phase 
were often discovered to be unnecessary and went un-used.   

Watching this cycle over and over left coworkers and customers 
paralyzed with fear.  We analyzed and designed longer with the 
hope we’d get it right the next time.  Customers reviewed 
designs longer or delayed reviewing them out of fear they’d 
miss something and be blamed for inevitable omissions in the 
delivered product.  We started developing late.  We finished 
even later. 

There had to be a better way. 

 

3. FINDING THE SOLUTION 
3.1 Enter Extreme Programming 
Extreme Programming [3] surfaced as an alternative to this 
madness along with other new ways of developing software – 
now branded as Agile [1].  Surely close customer collaboration 
and iterative development would correct customer satisfaction 
issues.  Surely test-driven programming [16], pair programming, 
and aggressive refactoring [11] would improve software quality.   

I stumbled into and spent a valuable year with Evant Solutions, a 
company committed to XP principles.  We built high quality 



software at an aggressive rate.  Deliveries were on time and with 
the expected scope usually intact.  However, I still found the 
company missing targets.  The resulting product seemed to have 
features the actual end user didn’t need or care about while 
lacking features the end user did need.  Much time seemed to be 
spent on features that would go un-used by actual end users.  
These same actual end users had to devise lengthy procedures to 
force their actual business processes to work with the software 
that was built.   Shouldn’t close customer collaboration have 
mitigated this issue?   

Ideally an XP customer is an expert end-user employed by the 
company actually purchasing the software.  In Evant’s case they 
were indeed expert users at one time, but now as product 
managers working for Evant, they had the responsibility to 
deliver commercially viable software to be competitive with 
other products in the same marketplace.   They had to balance 
the needs of users we currently had with users we hoped to 
acquire.  This was a daunting responsibility requiring tough 
trade-offs. 

At delivery time, it wasn’t always clear where those tradeoffs 
had been made.  Product managers seemed to be surprised that 
actual end-user needs had not been met.  We moved into a 
reactive mode delivering software that we hoped would address 
end-user needs, then waiting for the inevitable requests to make 
changes.  An element of empathy with the actual end-users 
seemed to be missing.  We were guessing what they needed.  
Was this just an unavoidable challenge of software 
development?   

3.2 Beauty Is Only Skin Deep. 
At Evant we’d always worked hard to make our software look 
good and be easy to use.  Our UI specialist did a fabulous job 
with screen design and the product was consistent and easy to 
understand.  However we still had the issue with actual business 
processes being hard to accomplish in the software and 
important parts of business processes being left out completely.  
Sure it looked good, but apparently there was more to hitting the 
target than looks. 

3.3 We’re All Crazy. 
Years ago I’d read Alan Cooper’s About Face [9].  It contained 
lots of good information on what not to do when designing the 
software’s user interface.  But our software seemed to have a 
good user interface – at least it didn’t break any of the major 
rules.   

During the spring of 2001 I was able to hear Cooper speak in 
Berkeley.  His focus was less on bad screen designs and more on 
software missing its target as a result of not understanding its 
user.  He pointed out the necessity of a persona.  A persona was 
a walking, talking, fictitious user with well-developed fictitious 
needs and concerns.  Reading Cooper’s The Inmates are 
Running the Asylum [10], I found that as a technologist, I’d 
likely never be able to identify with my user.  I, and the folks I 
worked with were the inmates and it would take serious effort to 
think like the persona we could create.  Knowing you have a 
problem is half the battle.  I proceeded under the assumption I 
could find the steps to recovery. 

In an attempt to move forward, I latched onto what looked like a 
valuable starting point.  Alan Cooper used the term “interaction 
design” to describe the missing role in software development, 
and further said "Almost all interaction design refers to the 

selection of behavior, function and information and their 
presentation to users." [10] Looking back at challenges I’d 
experienced before it seemed that we did a poor job of selecting 
the appropriate behavior and functions to implement in the 
software. 

4. FINDING THE SOLUTION, AGAIN 
4.1 It’s not Chet’s Fault. 
While lurking in the ExtremeProgramming discussion group 
[18], I read Ron Jeffries recommendation of Constantine & 
Lockwood’s Software For Use [6] as a possible source for good 
information on user interface design.  Although Extreme 
Programming Installed [12] may encourage blaming Chet – I’ll 
assign Mr. Jeffries the responsibility for starting me down this 
path.   

Like Cooper’s concerns, Constantine and Lockwood’s 
justifications for effective user interface design and usability 
were preaching to the choir.  But something different in this 
book was an actual documented method for arriving at a usable 
piece of software including choosing appropriate behavior and 
functions for the people identified as users of the software.  
However, the process described looked complicated, time 
consuming, and not easily adapted to an agile development 
approach.  What’s more it needed to happen up front.  Adding a 
time consuming process to the front end of software 
development sounded too much like the bad experience I had 
been running from.  

4.2 Ah-Ha! 
During the summer of 2001, I had the opportunity to learn 
Usage-Centered Design from Larry & Lucy directly.  The book 
is thick – and I’d wondered how we were going to compress this 
process into a weeklong class.  As exercises between lectures we 
discussed a business problem, brainstormed ideas onto 3 x 5 
cards and saw models emerge almost magically by shuffling 
cards around the table.  We did this collaboratively in a group 
with lots of discussion.  We learned an effective way to move 
from these arranged models of cards on the table to wireframe 
user interface.  We learned how to validate – or test – our user 
interface using the information we’d put together still on those 3 
x 5 cards.   

The business problem we took on to solve in exercises seemed 
daunting at first.  But surprisingly, in a short amount of time we 
arrived at an effective design.  And what’s more, the whole 
process was understandable and fun.  If this was Usage-Centered 
Design in practice, I could easily see it used as a collaborative 
approach to generating story cards for use in Extreme 
Programming development.  This would surely result in us 
delivering software that was high quality and effective at 
meeting the real business needs of the user.  Simultaneously I 
stumbled onto an assertion on page 122 of Cockburn's Agile 
Software Development [5] that when we look at the scope of 
concern for Usage-Centered Design and XP that the two sets of 
practices could indeed inhabit the same project. 

If past problems sprung from sometimes selecting and building 
the wrong behavior, possibly using U-CD as a method for 
interaction design would result in selecting correct behavior 
more often.  With XP we could now accurately plan, develop, 
and release a set of features.  We could hit the target of on-time 
delivery and high quality.  With more method behind choosing 



the features to implement, we now hopefully had a target that 
more likely included end-user satisfaction. 

 

5. DEFINING THE SOLUTION 
5.1 Agile Usage Centered Design 
Although Usage-Centered Design is thoroughly explained in 
Software for Use [6], an Agile approach is first documented in 
Larry Constantine’s paper: “Process Agility and Software 
Usability: Toward Lightweight Usage-Centered Design” [8].  
The steps given here are an abbreviated overview of the process.  
This is Constantine and Lockwood’s process with a few minor 
variations to match the way my team and I practice it today. 

1. Identify participants.  

Sequester a diverse mix of people in a room to collaborate 
on this design.  Include domain experts, business people, 
programmers and test/QA staff.  Include a facilitator that 
knows this process. 

 

Figure 1. Collaborative design sessions include a 
diverse mix of people. 

 

2. Preconception purge.   

Let loose.  Everyone brain-dump about the software we 
need to write.  Complain about the product you’re 
replacing.  Explain the cool features you expect the new 
product to have.  Get everyone’s concerns out into the 
open.  Write these concerns down in plain sight on 
whiteboards or poster sized paper hung on the wall. 

3. Review the domain.   

Domain experts and users in the room explain the business 
process, as it exists today.  Who is involved in the process?  
What combination of manual processes and computer 
based tools do current participants engage in to meet their 
goals? 

4. Define user roles and role model. 

Brainstorm user roles onto 3 x 5 cards.  Who will be using 
this software?  What are their goals?  Prioritize the roles by 
shuffling the stack of cards.  Note the most important roles.  
Label those roles focal roles.  Place them in an arrangement 

on the table that makes sense with similar roles closer to 
each other.  Discuss the relationships these roles have with 
each other.  This is a role model. 

 

Figure 2. Fixing role cards to poster paper and 
annotating relationships allows the role model to be 

posted for everyday reference. 

 

5. Define tasks and task model. 

Now that we know who will use our software, brainstorm 
tasks these roles will be doing to accomplish their goals 
onto 3 x 5 cards.  Shuffle the cards to prioritize them based 
on importance, then on frequency.  Note the most important 
and most frequent.  Label those tasks focal tasks.  Arrange 
the cards on the table.  Place tasks similar to each other, or 
dependent on each other, together.  Place tasks that have 
nothing to do with each other further apart.  Discuss the 
relationships these tasks have with each other.  This is a 
task model. 

6. Define interaction contexts. 

You’ll find tasks in the arrangement on the table clump up.  
Grab a clump.  This is an interaction context.  Give the 
interaction context an appropriate name. 

7. Detail user tasks. 

For each task in your interaction context, write a Task Case 
directly on the card.  The Task Case takes the form of a 
conversational Use Case similar to that described by 
Rebecca Wirfs-Brock in [17].  Alistair Cockburn in Writing 
Effective Use Cases [4] might classify them as “system 
scope, sea-level goal, intention-based, single scenario, 
Wirfs-Brock use case conversation style.”  U-CD would 
encourage you to simplify and generalize these Task Cases.  
Using a conversational form makes them easy to read.  
Limiting the scope and goal keeps them from being too 
broad or too detailed.  Generalizing them keeps them short 
and allows deferring user interface details for 
implementation time.  

8. Create an Abstract Prototype.  

For each interaction context, using the task cases you’ve 
detailed create an abstract user interface prototype.  This 
process is best described in [7].  At the end of this process 



you’ll know what components will be on the interaction 
context.   

9. Create wireframe user interface. 

Using pencil and paper create a wireframe drawing of the 
interaction context.  Show basic size and placement of 
screen components.   

10. Test the interaction contexts. 

Use role-playing to step through each task case used in the 
interaction context.  One participant pretends to be the role 
that would perform the task, another plays the role of the 
user-interface.  Validate that you can easily and effectively 
reach your goal using this interaction context. 

 

6. PUTTING IT INTO PRACTICE 
6.1 Starting In the Middle. 
Armed with a year’s worth of Extreme Programming 
development experience, U-CD training, and lots of other bits of 
useful information from books, papers and colleagues, I set out 
at Tomax, my current employer, to prove that U-CD + XP was 
indeed a potent combination that would lead to on time delivery, 
high quality and ultimately satisfied users.  The rest of this paper 
describes how close we came and how much remains to be 
discovered. 

While it’s exciting to think we could put into place a set of new 
practices, we never quite have a clean slate.  In my situation we 
had legacy practices to deal with.  When it came time to apply 
Usage-Centered Design it was often a bit too late.  There was no 
shortage of new software to write, but before our company had 
agreed to write the software, documents had generally been 
written up and agreed-to describing scope, features, and 
functionality.  In many cases if we were to attempt to practice 
U-CD our company would have been accused of re-trenching 
the same material already discussed by marketing and/or project 
management.  Looking at the use of the software often meant 
asking users to repeat conversations they’d already had when 
drawing up the agreement.  In addition the results of such a 
conversation may yield changes in scope.  This notion was at 
best unpopular.   

6.2 Some Opportunities and Some Success 
There were, however, some greenfield opportunities.  These 
were projects where requirement were not yet agreed to and 
where the customers and management were willing to approach 
things in a slightly different way.  In those situations we 
practiced Agile U-CD as described above with some success. 

 
6.3 What Worked: 
The preconception purge before the process seemed to be the 
chance to vent everyone was looking for.  Giving the group 
permission to have an unorganized conversation where anything 
could be said brought to light many concerns and fears we’d 
have not gotten to any other way.  This free form conversation 
supplied everyone involved with an immense amount of useful 
background.  We left ideas captured during this process on 
poster paper taped to the wall.  At the end of this process we 
were able to double back and make sure we’d dealt with the 
concerns, or found they weren’t really concerns any more. 

Working with 3 x 5 cards struck some participants as very low 
tech, but the results were very effective.  The discussion took the 
same form as a CRC card session [2] might take.  But, instead of 
classes, responsibilities, and collaborations, we talked about user 
roles and tasks.  We saw lots of card waving and passing cards 
back and forth.  People immediately understood what was 
important by looking at the position of the card on the table.  
People immediately knew what ideas were related by their 
position in relation to each other.  An arrangement of cards on 
the table could communicate far more, faster than any paper 
document or diagram could.  We found that taping card 
arrangements to poster paper, then marking up the taped 
arrangements resulted in a very valuable model. 

 

Figure 3. Participants quickly learn to work with 3 x 5 
cards. 

 

Mapping Task Cases to Abstract Prototypes was a very simple 
and effective way to push through from knowing what we 
needed to do to how it might look on the screen.  The Abstract 
Prototype consisted of post-it notes, signifying abstract 
components, stuck to poster paper.  We could easily rearrange 
them and push through this paper-prototyping phase to a simple 
wireframe user interface.   

6.4 What Was Bumpy: 
Folks had problems with User Roles.  In U-CD a role isn’t a job 
title – but more accurately a high level goal.  For example: Clerk 
is a job title.  CustomerSalesTransactionHandler is a role.  The 
distinction becomes important when someone looks at a list of 
roles later and is unable to determine what each does.  Or when 
looking at a task case like ReturnMerchandise and ask who does 
it?  In this case if you’re using job titles, the Clerk, Assistant 
Manager and Manager may all have responsibility to perform 
that task – but, we’d have to know the business rules to be sure.  
However, we can reasonably assume a 
CustomerSalesTransactionHandler might have that 
responsibility.  Choosing expressive role names is valuable – but 
is a hard idea to grab onto for domain experts.  In practice I 
found it easier to let folks use roles like “clerk” initially.  During 
discussion of the role and the goals the role had, we could easily 



convert the job title to one or more role names that captured the 
users’ goals. 

Attention spans weren’t long enough.  By the time you reach the 
tail end of the process when it will really bear fruit, people are 
exhausted and unable to effectively do a good job building the 
UI.  Reconvening the next day left us with a fair amount of 
ground to cover again to get everyone back on the same page.  
The process takes a while and for those who don’t do it often, 
it’s time consuming and tiring.  Folks were accustomed to one 
person going off to a cubical to write functional specifications 
and not this long collaborative process.  As anyone who 
practices pair programming can tell you, constant collaboration 
can be exhausting.  We found it most effective to split the 
process at the point we’d identified interaction contexts.  We 
could then continue the process at a later time using a smaller 
more focused group of people – those that were ultimately 
responsible for delivering the system.  

The resulting artifacts look funny.  In this organization 
functional design previously took the form of a list of “shalls” – 
the software “shall do this” sort of statements along with 
assumptions, a very literal screen design, and sometimes a 
narrative on how it would be used.  Roles and a role model 
weren’t immediately understandable.  Task Cases seemed too 
general – too abstract for some folks.  Wireframe UI drawings 
weren’t quite literal enough.  These issues impacted acceptance 
of the functional design.  On occasions that we needed to 
produce functional design, it seemed to work best to document 
user roles, the names and goals of each user task, and cleaned up 
versions of wireframe user-interface drawings.  These things 
dropped into a document seemed to look enough like 
requirements for folks to “sign-off” on the effort. 

7. REFLECTING ON WHAT WE’D 
DISCOVERED 

7.1 Were We Gaining Anything? 
It sure felt that way.  Although close collaboration within a large 
group was tiring, when we finished the amount of tacit 
knowledge in the group was irreplaceable.  Everyone within the 
team understood who the users were and what their goals were.  
Those in the team who hadn’t been present for the U-CD 
sessions quickly assimilated the vocabulary of those who did.  
Artifacts, such as role and task models, created during the 
session were posted in the development area to “radiate” [5] 
information throughout the implementation of the software. 

Our priorities became clear.  We need only find the focal, or 
most important user roles and their focal task cases to find the 
best starting point for development.  If we became bogged down 
implementing functionality for roles that weren’t focal, we could 
justify choosing a simpler, less elegant, but cheaper and faster 
approach.  

Was this better than a long, functional design written by one 
expert?  It’s not easy to say that the results were definitely 
better, but it is easy to say that team members’ understanding 
and ownership of the software was higher than before.  By 
arriving at this functional design together, all knew how to 
accomplish this process and we'd eliminated what was before a 
single point of failure. This seemed like a definite improvement. 

7.2 Test-Driven Design For User Interactions 
Throughout the development process, whenever anyone on the 
team was unclear on the direction we were going with the 
software, we’d pick up the original task-cases and attempt to 
execute them on the software.  They became our working 
acceptance tests.   

Knowing user roles helped answer other questions – like what 
the ability level of the user was and what that user’s goal was.  
For example, often in a business process the goal of the user 
doing the process is much different than a manager who needs to 
have visibility of what was done.  They need to see different 
information at different times.  Using user roles, circumstances 
like this became clearer.  

Finally, when formal acceptance and QA had to occur, task 
cases could be “fleshed out” to contain specific references to the 
actual implemented user interface along with literal test data.  
Roles would serve as a collection point for acceptance tests.  
We’d focus on validating the software a role at a time essentially 
wearing the hat of the user role and performing the work they’d 
need to perform with the software.  

Our confidence in the finished software was higher.  The feeling 
seemed analogous to the feeling you get developing source code 
using automated unit testing and test-driven development.  It’s 
not really provable that code developed this way is better than 
other ways, but after doing it I find my confidence in the code is 
higher.  I also find I’m unwilling to work any other way as that 
seems risky or foolish.  As with test-driven development, there 
was no knowing if our finished results were indeed better than 
we could have come up without U-CD, but confidence was 
higher.  Proceeding on a project without knowing what user 
roles existed for the product and what tasks they needed to 
perform now feels as risky as writing code without unit tests.   

 
8. WHAT SHOULD I DO TOMORROW? 
8.1 Interaction Design Incorporated Into 

Day-to-Day Processes of a Mostly Agile 
Company. 

At Tomax Technologies, certain agile processes have taken off 
and work well.  Scrum-style [15] daily stand-up meetings are 
commonplace.  Cockburn’s Information Radiators abound [5].  
Teams develop iteratively, many of them using schedules 
generated by an XP style planning game.  Some teams 
religiously use unit-testing, pairing, and refactoring.  Other 
teams are still a bit suspicious of all these new-fangled ideas.  
Although we have product managers, they don’t have the time to 
ride shotgun on a project the way an XP customer should.  They 
rely on the team to make the detailed decisions about the 
implementation of features in the product.  Acceptance testing is 
up to the team and performed by test/QA staff assigned to the 
team.  Development methodology is a decision made more at the 
team level than the corporate level.  In this sort of environment, 
how do we incorporate some interaction design into things we 
do every day? 



 

Figure 4. Our development environment at Tomax is 
wallpapered with role models, task models, task cases, 

and wireframe UI drawings alongside XP-style 
iteration schedules. 

 

The following is a short list of Interaction-Design-centric 
guidelines our team tries to observe: 

1. We always ask “who?”  

While we're looking at a piece of development we make an 
effort to understand who will be using it. What is the user 
role involved? If we don't know, we back up and do a quick 
user-role brainstorming session. Arrange a few 3 x 5 cards 
on a table to understand the role model, and then continue 
on.  When we understand who will be using the application, 
we make better decisions about what they should see and 
how sophisticated the interactions can be. 

2. We validate user interactions with a task-case.  

To make sure our user interface is usable, we write a simple 
task-case giving us the step-by-step intention driven 
process a particular user role might follow to complete the 
task.  Does the current design of the application do this 
efficiently?  This may be analogous to a manually executed 
XP acceptance test. 

3. We strive to understand focal user roles and focal task-cases. 

Make sure everyone in the project understands who it is 
most important to satisfy and what specific activities need 
to run smoothest. Focus on those. Spend extra effort to 
make them right. Allow the less important roles and task-
cases to slide. They need to be functional - but fluid and 
pretty may be a little less important. Time is most wisely 
spent elsewhere. 

4. We look for features that don't serve any role or facilitate any 
task.  

There's always a temptation to scoop up seemingly easy 
features. Beware statements like "It would be cool of the 
software could..." - or - "right here we could show..." 
Always ask what user role needs this? What will they be 
doing when they do need it? Does this user role care about 
this information? What information do they care about? 

5. We elevate the writing of stories into interaction design.  

Help the folks who know the business understand user roles 
and task-cases. Before requirements are created discuss 
roles - who's important, who isn't. Discuss task cases – 
what does each role do. Clearly understand priority and 
dependence. This makes planning an iteration easier. This 
allows us to deliver a truly usable product sooner by 
appropriately accommodating all the necessary tasks of a 
focal role. 

6. We revisit our requirements often.  

In implementing the software thus far, have we learned of a 
role we didn't know about earlier? Have we found that to 
accomplish a goal it may take unforeseen tasks or that some 
of our tasks are unnecessary?  When we're not sure, we pull 
out the 3 x 5 cards and reassemble role models and task 
models to evaluate if the design still makes sense. 

 

9. INTERACTION DESIGN AND AIM 
9.1 Beck & Cooper Face Off. 
In an interview posted Jan 15th 2001 on Fawcette Technical 
Publications website [14], Kent Beck and Alan Cooper face off 
on the subject of up-front interaction design vs. agile methods.  
Excerpts from the conversation include the following comments. 

Cooper: “…I'm not talking about having a more robust 
communication between two constituencies who are not 
addressing the appropriate problem. I'm talking about 
incorporating a new constituency that focuses exclusively on the 
behavioral issues. And the behavioral issues need to be 
addressed before construction begins.” 

Beck: “OK, wait. I agreed with you very close to 100 percent, 
then you just stepped off the rails. I don't see why this new 
specialist has to do his or her job before construction begins?” 

Cooper: “It has to happen first because programming is so 
hellishly expensive… There's enormous cost in writing code, but 
the real cost in writing code is that code never dies. If you can 
think this stuff through before you start pouring the concrete of 
code, you get significantly better results.” 

Beck: “No. I'm going to be the programming fairy for you, Alan. 
I'm going to give you a process where programming doesn't hurt 
like that—where, in fact, it gives you information; it can make 
your job better, and it doesn't hurt like that. Now, is it still true 
that you need to do all of your work before you start?” 

I hear Cooper asserting that software is too rigid to easily 
change – that we must get interaction design right, all of it, 
before we develop.  I hear Beck saying that we’ve eliminated the 
cost of change curve so we can now get it wrong without 
incurring great expense.   It seems that both Beck and Cooper 
share the same goal of cost-effectively delivering high quality 
software that results in end-user satisfaction.  They seem to 
disagree on how this is done.  Could they both be right to some 
degree? 

9.2 Building Better Aim. 
If our goal is to deliver high quality software on time while 
satisfying end-users, then, that’s a good target to aim for.  I’d 
interpret Cooper as saying we need to hit our target with one 
carefully calculated shot, and the interaction designer should be 
the one to take aim.  I’d interpreting Beck saying we can shoot 



often and cheaply, so keep shooting until you hit your target.  
Let businesspeople take aim since they’re paying for all of this. 

In my experience, I’ve seen evidence that we can indeed shoot 
often and cheaply.  But, I’ve also seen evidence that 
businesspeople don’t always have the best aim.  And, although 
XP and agile methods do help minimize the cost of developing 
working software and decrease the cost of changing it, cost is 
still cost.  And businesspeople don’t like paying unnecessary 
costs.   

If this metaphor holds, then a working solution might be to try to 
improve the aim of the businesspeople by using interaction 
design concepts to help better define our requirements.  If we 
can dependably and repeatably apply interaction design tactics 
we should be able to build better aim. 

Our experience at Tomax bears this out.  The simplicity and 
repeatability of U-CD allows the actual customer, business 
leaders, and developers to all participate in "designing" the 
requirements.  During this process we all feel more confident 
that we understand what the software should do and why.  We 
still miss our target sometimes, however good development 
practices do indeed allow us to change the design quickly.  Also 
important is that when we do get it wrong we now understand a 
little better why. It's often an undiscovered user role, or goal. 
Using an interaction designer's sensibilities and U-CD as 
process framework, we are all learning to ask better questions – 
which gives us the better aim we’ve been looking for 

10. ACKNOWLEDGEMENTS 
Thanks to valued team-members from Tomax Technologies & 
Evant Solutions for providing a laboratory to learn in. Thanks to 
Larry Constantine & Lucy Lockwood for being great teachers. 
Thanks to collaborators and advisors: Stacy Patton and Kay 
Johansen. Special thanks for valuable feedback and advice goes 
to Alistair Cockburn for help in motivating and revising this 
paper.  Thanks to Lougie Anderson for her advice, and 
encouragement.  Thanks also to the enthusiastic team at Sabrix 
who allowed themselves to be guinea pigs.    

11. REFERENCES 
[1] Agile Alliance http://www.agilealliance.com 

[2] Beck, K., Cunningham, R., A Laboratory For Teaching 
Object Oriented Thinking, (1989) 
http://c2.com/doc/oopsla89/paper.html 

[3] Beck, K., Extreme Programming Explained, Adison-
Wesley (1999) 

[4] Cockburn, A., Writing Effective Use Cases, Addison-
Wesley (2000) 

[5] Cockburn, A., Agile Software Development, Addison-
Wesley (2001) 

[6] Constantine L. & Lockwood L., Software For Use, Adison-
Wesley, (April 1999) 

[7] Constantine, L., Windl, H., Noble, J., & Lockwood, L. 
From Abstract to Realization in User Interface Designs: 
Abstract Prototypes Based on Canonical Abstract 
Components (2000) 
http://www.foruse.com/Files/Papers/canonical.pdf 

[8] Constantine L., Process Agility and Software Usability 
(2001) http://www.foruse.com/Files/Papers/agiledesign.pdf 

[9] Cooper, A., About Face, Hungry Minds Inc. (1995) 

[10] Cooper, A., The Inmates are Running the Asylum, Sams 
(1999) 

[11] Fowler, M., Refactoring: Improving the Design of Existing 
Code, Addison-Wesley (1999) 

[12] Jeffries, R., Anderson, A., Hendrickson, C., Extreme 
Programming Installed, Addison-Wesley (2000) 

[13] Mathaissen 

[14] Nelson, E., Extreme Programming vs. Interaction Design 
(2002) http://www.fawcette.com/interviews/beck_cooper/ 

[15] Schwaber, K., Beedle M., Agile Software Development 
with Scrum, Prentice Hall, (2001) 

[16] Test Driven Programming 
http://xp.c2.com/TestDrivenProgramming.html 

[17] Wirfs-Brock, <Which paper did she first document 
conversational use cases?  Find this.> 

[18] Extreme Programming Yahoo Group 
http://groups.yahoo.com/group/extremeprogramming/

 


