Finding the Forest in the Trees

Jeff Patton
ThoughtWorks
jpatton@thoughtworks.com

ABSTRACT

While the iterative development approaches found in Agile
Software Development fulfill the promise of working software
each iteration, the task of choosing which software to build first
can be formidable.

This experience report discusses my team’s experience working
with a large healthcare company writing software for use in their
hospital’s newborn intensive care unit (NICU). The very large
scope of this project and the urgent need for delivery made
project release planning difficult. Focusing on capturing feature
details in XP style user stories led to confusion about priorities
and release strategy. Making good use of User Centered Design
user role models and task models gave us the big picture we
needed to un-stick the release planning process and effectively
choose the bit of project scope we needed to focus on for our
first and subsequent releases.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Elicitation Methods,
Methodologies

General Terms
Management, Documentation, Design, Human Factors

Keywords
Agile Software Development, User Centered Design, Software
Release Planning, Requirements

1. WHY AGILE?

1.1 The Problem

During fall of 2004 ThoughtWorks had the privilege of helping
a major health care provider transition from a mostly waterfall
software development process to an Agile approach to
developing software for use by its over 20 hospitals and dozens
of clinics and surgical centers. Prior to the decision to adopt an
Agile approach this health care provider, hereafter refereed to as
HCP, followed a somewhat traditional process of gathering
requirements during a requirements phase, building software
based on those requirements over the course of many months to
over a year, then testing the software for release into the clinical
environment. This approach had its pros and cons.

On the positive side, requirements were generated during the
course of many collaborative meetings involving the
Information Systems team (development and medical

Copyright is held by the author/owner(s).
OOPSLA’05, October 16-20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

informaticists, specialists with both medical skills and software
development skills), and clinicians who needed the software.
Requirements documents were relatively light since much of the
understanding could be retained in memory by those involved in
the conversations.'

On the negative side, it took many months before the results of
design and development were visible to the clinicians expressing
the requirements. Upon seeing the software, unpredicted new
requirements and requirements changes would often emerge.
Changes might be necessitated by initial misunderstandings or
simply by modifications occurring in the approach to doing
work over the several months after requirements discussions. IS
owned the resulting software design and could then make the
choice to respond to, or defer new requirements. Trying to
accommodate many new requirements and still meet deadlines
often resulted in reductions in quality, making the people on the
business side unhappy. The business side included the clinician
users of the software and the administrators sponsoring its
construction. Deferring requirements left the software missing
important features which made the business side unhappy.
Simply stated, the business people were often unhappy.

1.2 A Solution: Business Drives
Development Using an Agile
Approach

During 2004 a new HCP Information Systems director
recognized the problems and suggested that following an Agile
approach to development might resolve them. An Agile
approach would change requirements gathering from an early
phase of development to ongoing involvement with clinicians on
the business side. This ongoing involvement would help ensure
that problems with ballooning requirements were detected and
dealt with earlier. Following an Agile incremental development
approach would allow clinicians to watch the software emerging
from short development iterations as opposed to the long many-
month development cycles they’d seen before. The hopes were
that an Agile approach would allow the business side to
appropriately drive the development of the software and allow
them to better accommodate emergent requirements and get
working software into hospitals and clinics faster. This should
improve clinician productivity and patient care at a higher rate,
and make the business side, clinicians and administrators,

happy.

To make a fast transition to an Agile development approach,
ThoughtWorks was selected as a vendor to coach HCP staff and

! Alistair Cockburn’s Agile Software Development [5] discusses
modalities of communication with face to face communication
in front of a whiteboard as an example of the richest form of
communication.

co-develop software in an initial high impact business area that
built software for the care of women and newborn infants.

2. SETTING UP TO SUPPORT AGILITY

2.1 Continuous Collaboration Isn’t Free
Where in the past HCP had collected requirements during
meetings held over the course of many months, an Agile
approach suggested we have continuous involvement from an on
site customer. An on site customer as described in Beck’s
Extreme Programming Explained [1] suggests a person or group
of people familiar with the software that needs to be built. HCP
filled the Agile customer role by taking nurses directly from
hospitals and giving them the dual role of part time Agile
customer along with their part time nursing duties. These expert
users should make ideal Agile customers since they fit Extreme
Programming’s description of a customer that “will really use
the system when it is in production.” [XPE p60] While adding
these expert users into this role isn’t free, the improvement in
software quality and delivery times should more than make up
for the extra expenses.

It’s worth noting that these expert users weren’t normally the
same expert doctors and nurse practitioners that participated in
the up-front requirements sessions in HCP’s old process. Those
original doctor and nurse stakeholder’s time was too constrained
to participate on an every day basis. These new expert
user/Agile customers now had the responsibility of participating
in early collaborative sessions with the original stakeholders to
capture long range product vision, goals, and priorities, along
with details of their business processes. The Agile customers
would then share ongoing progress on a regular basis with the
original stakeholder group. The developers and medical
informaticists from the IS side that normally collaborated with
stakeholders now relied on the Agile customers for their
information.

2.2 Customers Manage Their Details
With Stories

In most Agile processes development work is divided into small
pieces that are released into an iterative development cycle
normally lasting one to four weeks. In Extreme programming
these small pieces are called user stories. Feature Driven
Development [11] refers to them as features; Scrum refers to
them as items in a large product backlog [14]. Early definitions
of a user story given by Extreme Programming, from 2000,
suggested they were a promise for a conversation between
developer and customer. What was written down was just
enough to start that conversation — usually a story name and a
short paragraph written on an index card. [XPE p90] Over time
the definition of story evolved from something the customer
wants the system to do that has business value to suggest that a
story must have business value, have enough information so as
to be estimable by development, and be small enough to be
completed within an iteration. For the HCP Agile customers
that iteration was two weeks, with a preference for stories that
could be completed in three developer days or less. This meant
that those in the customer role create user stories and write tests
to validate that the stories are implemented correctly.
Customers should then be available on site for daily
collaboration with developers to help explain and validate that
stories are being implemented correctly in code.

23 Describing a Complex Software
Product Takes Hundreds of Stories

As HCP customers began to describe their software in stories,
they quickly realized that even a small software release, one
expected to be completed in three months, would be composed
of dozens of stories. It was more true to say the entire scope of
the software would be composed of hundreds of these stories
from which dozens would be selected for a smaller three month
release. Identifying product requirements as small stories was
new and very hard work for those in the Agile customer role.

In their old process it was development’s job to break the
software into smaller pieces should they choose to do so. In
HCP’s old process it was assumed a release would be delivered
“feature complete” so there was no need to carve out a subset of
features for an early incremental release.

2.4 Stories About Medical Software Read
More Like “Novels”

As development progressed, the customer team found that for
developers to confidently estimate the development time for a
story, they needed a fair bit of information. The medical domain
is very complex. There are many legal rules to consider when
implementing new functionality. ~There are many existing
services that the new software must integrate with — services that
manage medical terminology and external application
customization points. Developers found that by understanding
these rules and external dependencies before estimating, they
could estimate with more confidence. To help developers, those
in the customer role began researching these rules and external
dependencies and documenting them for inclusion in a written
user story. The result was a user story that, while functionally
simple, might contain many pages of supporting documentation.
Writing these detailed user stories was hard work for HCP’s
Agile customers.

3. THE FIRST AGILE DELIVERY

The delivery team composed of HCP’s expert user customers,
ThoughtWorks analysts, HCP developers, and ThoughtWorks
developers worked together for three months to successfully
deliver additional features and changes on an existing project.

This first delivery wasn’t easy. HCP developers were burdened
with learning new development techniques such as test driven
development [2], refactoring [7], and more sophisticated object
oriented design principles and patterns [8]. Those in the
customer role needed to learn story writing skills, test writing
skills, and adapt to the continuous need for communication with
the developers they supported and the stakeholders they
conveyed ongoing progress to.

Given those challenges, the team successfully delivered a
release that was met with responses from its user community
like “this is the best version we’ve seen yet” and “...I see major
improvements!”

4. STARTING THE NEXT PROJECT

4.1 The Newborn Intensive Care Unit

The Newborn Intensive Care Unit (NICU) currently used a
system for documenting medical records that while useful had a
number of issues users wanted to see corrected:

= The performance of the existing system was often a
problem such that the daily documentation done for infants
in the NICU might take several hours to complete for an
attending physician or nurse practitioner. If the system
could save and retrieve information faster that would help.

= Doctors and nurses had identified a number of new features
and changes in workflow that would help them do their
work more effectively.

= Doctors wanted to see improvements to the quality of
information they gave at patient discharge time. While the
legacy system did give all the information, the information
could stand to be presented more concisely and clearly.

= And finally, many of the existing applications for medical
records used in the hospital had been upgraded to a newer,
faster, flashier J2EE platform. The NICU system hadn’t
been updated yet and stakeholders believed this would help
resolve many issues.

Taken all together, these reasons made the urgency of getting a
new system to those in the NICU high.

Through many planning discussion over a long period of time
the NICU department initially received funding to replace the
NICU system as-is with newer technology, then eventually
received funding to add additional features and workflow
changes to improve the system. Armed with a goal to replace
the NICU system with something newer and better, and funding
to do so, a development team was assembled to begin the
process.

4.2 Writing NICU Stories

Although story writing was challenging for the previous project
because of the large number of stories, and the large amount of
detail needed, it still seemed like an effective way to drive the
new project. Story writing began for the NICU project.

Initial discussion and requirements gathering on the new NICU
system had taken place over many months prior to the
introduction of an Agile development approach. Requirements
fell into two categories: the general need to re-build most of the
functionality of the NICU system as-is, and long lists of specific
changes and improvements to make in the new system. In the
old methodology it might have been acceptable to point to the
massive legacy system and say “build it like this one,” but in our
Agile approach we needed to break that up into smaller, bite-
size, stories. Given that, experts on the old system and the
NICU processes, doctors and nurse practitioners, went to work
decomposing the old system into user stories, and rolling
changes and improvements in along the way.

4.3 No End in Sight

NICU story writing faced a number of challenges. The exiting
Agile customers, while they were experienced nurses, were not
strong experts on the NICU business processes. So, the Agile
customer team collaborated with NICU nurses and doctors to
help them write user stories.

Early NICU stories ended up being rather “large.” By large we
mean that based on the Agile customers’ past experience, it
would take developers far longer than an iteration to implement.

Although the stories weren’t written in a tremendous amount of
detail, it still took a long time to write these stories. The strong

NICU domain experts engaged in this task often asked “Why am
I doing this? I should be more of a resource to help others do
this rather than doing it myself.” And, indeed, in the prior
methodology they had been such a resource that developers and
medical informaticists used to gather information from. This
Agile approach of having expert users drive the development
was taking a lot of time, and participants were feeling it. Much
of what was being written down was a restatement of what the
existing system already did, or a description of an additional
feature previously recorded elsewhere. Consolidating this
information into written user stories was time consuming work.

After recording just the names of each candidate user story, our
Agile customers and expert NICU users ended up with a list of
600-700 stories. Based on the few detailed stories already
written, writing each story might take anywhere from a couple
hours to a couple of days. Clearly we couldn’t write details for
all these stories since that would take thousands of hours to
accomplish. We’d have to prioritize these stories and elaborate
the most important early. The primary physician sponsor felt
like we were “going back to square one — re-conveying all the
requirements again. This Agile process is slowing us down —
getting in the way of the development we already know we need
to do.” He and others on the project began to feel frustrated.

Prioritizing a list of this size was difficult. A first pass
attempted to categorize stories as high, medium, and low
priority — As, Bs, and Cs. However, we often ended up with
stories of “A” priority being dependent on stories of “B” or “C”
priority. The list of As was still a substantial list. So, it wasn’t
as simple as writing details about all the As.

As the customer team continued to ponder over the massive
story list, time went by. Expert users continued to elaborate
stories we were pretty sure we’d need soon. But, since many of
the stories hadn’t been elaborated, no development time
estimates had been given. With a poor understanding of priority
and development time, it was difficult to determine what might
go into a first release, and when that release could be delivered.
Sitting on a huge list of stories with no good understanding of
where to start building or how long it might take we felt lost in
the woods.

5. HOW CAN WE FIND THE FOREST IN
THE TREES?

5.1 Using a User Centered Design
Strategy

It was becoming clear that we were lost in details, that there was
no clear place to start building this product. We needed a
strategy for getting unstuck.

An approach I'd used before for requirements -elicitation
leveraged a number of different User Centered Design’

2 The term User Centered System Design was first used in
Norman & Draper’s 1986 book of the same name [10].
Shortened to User Centered Design, the term refers to a class of
design and testing approaches that leverage the understanding of
the users of the software to make design decisions, leverage user
observation and study to gain that understanding, and involve
users collaboratively to prototype and test software.

techniques. Normally I might use these techniques to better
understand the users and usage of software to arrive at a better
understanding of what the scope should be. Our group already
felt they understood what the requirements were; it was just this
darn story writing, estimating, and release planning process that
was holding us back. However, after talking through the basic
progression of techniques used in a UCD approach, it looked
like using a few of them might yield different results. And, at
this point the group was willing to try anything.

5.2 User Centered Design Distilled

Garrett’s Elements of User Experience Model [9] gives a high
level view of the progression and dependency of activities used
in UCD - see Figure 1.

Specific
A

S TEE

L7

SHES AL
|
SFlrvelos s

FEaEE

4

SIPIEE

Y
General

Figure 1: Garrett's Elements of User Experience

Garrett’s model slices software into several planes of design
activity from the most specific to the most general. The top
layer, the surface, refers to the visual design we see when we
look at a finished piece of software. The skeleton layer below
refers to the screen or pages’ internal design that supports user’s
workflow within the page. The structure layer below refers to
the organization of software features into pages or screens and
how the user might navigate from page to page. The scope layer
below that refers to those features the software has and/or the
activities the software supports. And finally, the strategy layer
refers to the reasons we’re building the software. More
specifically: how the software earns return for its stakeholders,
and what users it serves and their goals.

While we might describe software by peeling away layers from
surface down to strategy, we design it by starting from strategy
and working our way up through to the surface.

I find that in practice most software projects pay a fair bit of
attention to the scope of the project without developing strong
understanding and agreement on the strategies that motivate that
scope. Arguments over scope are often rooted in disagreements
on strategy.

At HCP we were having trouble prioritizing scope. That is to
say that stakeholders believed it all should be built and released,.
But was that true? And if we were to release part of the

application first, what should that first part be? Possibly a better
understanding of our strategies might help with this effort.

5.3 Understanding User Tasks

A common concept used in User Centered Design approaches is
the user task. If I were a user in pursuit of a goal, tasks are what
I’d do to reach that goal. For example, I have a goal to keep my
teeth into my old age. Daily brushing and flossing are the tasks
I do to try to achieve that goal. UCD approaches identify the
users of their software and their goals, then secks to identify the
best set of tasks the users might engage in to meet their goals.
That inventory of tasks is a great starting point for the scope of
our software.

The user task concept used in UCD is similar to, and often
interchangeable with, a use case. For instance the name of a
user task might look just the same as a use case.

People often confuse the concept of task with a feature or design
solution. For example in my task of “brush teeth” the feature
my bathroom needs to support that task is a toothbrush — and
maybe a cup to put it in. That toothbrush might be hard,
medium, or soft, might be available in a variety of colors. We’ll
need to know those details before we build a toothbrush. The
activity of determining those details is one of the design parts of
UCD. Sometimes the design activity results in different
solutions altogether — like WaterPik instead of toothbrush for
instance.

Understanding user tasks is an important first step to designing
solutions. When determining the general scope of a software
product, a UCD approach might first have us identify the scope
in terms of user tasks.

Looking back at the scope of our HCP NICU project it turned
out that scope we’d discussed so far was a mixture of tasks and
solutions. Our scope contained lots of toothbrushes —
descriptions of features without any clear connection to the user
tasks those features supported. How many items would we have
in scope if we expressed it in terms of user tasks instead of
developer sized user stories? At this point we didn’t know, but
we felt like it would be less. By identifying them as such we
might have a more concise idea of what user activities the
software needed to support.

5.4 Tasks and Goal Level

In Cockburn’s Writing Effective Use Cases [4], he uses the
concept of goal level to describe how use cases elaborate on or
subsume each other. Since user tasks are like use cases, they
also can be described in terms of goal level. Understanding goal
level helps write user tasks, and more importantly controls how
much detail to go into when doing so.

Cockburn describes goal level using an altitude metaphor (see
Figure 2). Sea-level, in the middle of the model, describes
functional level goals pursued by a user. You can think of a sea
level activity as one you’d do in a single sitting without
interruption. Brushing teeth is like that.

0 High Summary Level

//,] Summary Level

j{“ﬁ User or Function Level

I;@ Sub-Function Level

@ Step Level

Figure 2: Cockburn's Goal Levels

Below sea level is the “fish” or sub-function level. To brush my
teeth I use other steps like getting the toothpaste, opening the
cap, squirting it on the toothbrush. A use case or user task titled
open cap on toothpaste might be considered sub-function, or fish
level.

Below fish level is the clam level used for the smaller steps
within fish level task — like twisting the cap of the toothpaste
counter-clockwise to open and clockwise to close. Usually
explaining software in this much detail early is both speculative
and time consuming.

Above sea-level is the kite or summary level. Brushing and
flossing are part of my daily regimen of dental care. A use case
called daily dental care might include steps like brushing and
flossing. You can see that summary level goals might be
accomplished over one or more sittings and are built out of lots
of sea-level goals.

Above kite level is cloud level. You might describe your
software and the world around it with a cloud level use case.
These are good for executive summaries or short high level
descriptions of the entire system.

5.5 Scoping the Project with User Tasks

I think of UCD’s user tasks as sea and fish level activities.
When articulating tasks for the NICU software we wanted to pay
attention to the goal level to make sure we didn’t get too low
level. This would keep our number of scope items at a
manageable level.

To make sure we were identifying as many of the tasks as
possible, we needed to be clear about the users we were serving
and their goals — since tasks were the thing they did to reach
their goals. We also needed to string tasks together in possible
workflow scenarios to validate that we hadn’t forgotten about
important tasks.

5.6 Contextual Observation

Contextual Observation refers to the idea of observing users
performing their work in the environment where they normally
would be performing it. Holtzblatt and Beyer’s Contextual
Design [3] uses contextual observation and inquiry as the
cornerstone of its UCD approach. To really be sure we
understood the people using our system, what their goals were,

and what their current challenges were, we needed to spend
some time in their environment. = While much of the
understanding and most of the requirements we had so far came
directly from those users, our expert user customers and the
developers hadn’t spent much time in their environment.
Contextual observation was a UCD technique we decided to use
to better understand and validate our strategies with the NICU
software.

6. APPLYING THE UCD STRATEGY
6.1 Collaborative Modeling Sessions —
Taking a Step Back

It would be revisionist history to say we clearly saw our issues,
and then determined that taking a UCD approach would solve
our problems. What actually happened was something a little
different.

The group working on requirements and story writing for the
HCP NICU project routinely met for collaborative worksessions.
During one of these sessions the group decided to get a little
more information about User Centered Design approaches. On
hearing more, the group then decided to extend a few more
hours for a timeboxed activity of collaborative UCD modeling.

Over the course of the next few hours we discussed and noted
the business level goals for the system, described the users
who’d be using this system and their goals, then brainstormed
user tasks they’d be engaged in. These tasks were arranged into
a simple end to end workflow that expressed the business
process across all users of the system.

To many of those involved, the process seemed like we were
taking several steps backward in our requirements process. “We
know so many detailed requirements today, what’s the value in
discussing these general ideas that were already commonly
understood?” However, for some in the room who weren’t
doctors or nurses practicing in the NICU this was the first time
they’d gotten a clear simple understanding of the scope of the
project. “We could now see the whole process from beginning
to end.”

It took more discussion and a subsequent collaborative modeling
session to arrive at list of about 80 user tasks. Managing 80
scope items felt a lot better than the story backlog that was
edging toward 700.

Clearly we’d made a step forward in communicating within the
group of Agile customers and NICU domain experts. More
people shared some common understanding of what we were
doing than before. But we were clear that we still had the same
amount of software to build; that building that software was
going to take a long time, and that we still couldn’t decide
exactly where and how to start.

6.2 On Site Contextual Observation and
Hard Truth

Collaborative modeling sessions helped convey the big picture
from the doctors and nurses intimately familiar with the
processes in the NICU to the Agile customers and developers
who’d be designing and building the software. But for the Agile
team, we needed that last bit of understanding and empathy
we’d gain through contextual observation.

It’s usually an understatement to say that spending time with
actual users engaged in their work is enlightening. Our team
observed intelligent, competent doctors and nurses spending
large amounts of time in front of medical records software
documenting their work. They were extremely frustrated with
the poor performance of the software. All had suggestions for
features that would improve or streamline the documenting of
their work. All agreed they spent far too much time in front of
the software. And, all complained that they’d been promised
relief in way of new software for a very long time.

It was true that requirements teams and business teams had been
working for over a year to acquire funding for replacing the
software, then working to determine exactly what that
replacement might be. All the while the existing software users
continued to struggle with the software knowing it could and
should be better. Their frustration was visible and obvious.
Understanding this raised the level of concern and urgency
within the Agile team.

6.3 Identifying a Release Strategy

While task modeling helped us better understand the project
scope, it was the understanding gained from observing and
visiting with users in context that helped gel a release strategy.
Our users needed relief sooner than later. It was critical that we
get some part of the new system in place as soon as possible
both to improve the quality of the user’s daily work and to show
them in a tangible way that progress was being made.

The focal business goal of improving the speed of user
performance was set. By user performance we don’t necessarily
mean the speed of the system, but rather the time it takes users
to perform their work using the system.

The NICU doctors and nurse’s business was patient care. We
couldn’t deliver a fractional part of a working system, rather the
system needed to support the work they were doing
electronically today. No matter what we did, adversely affecting
the quality of care, or taking necessary features away from the
NICU staff wasn’t possible.

Armed with the goal of increasing user performance and
knowing that we should deliver some usable fraction of the
system soon changed the way we looked at scope. Instead of
deciding where to start building the software to re-automate the
entire business process, we asked if we could keep the old
software up and running. Then we sought to identify a high
impact part of the business process that could be carved out and
re-built in the new software. The result would have users
working with both the legacy software and the new software
together to accomplish their goals. The end blended result
needed to be something that met that goal of increased user
performance.

Using a UCD approach we’d identified one of our most
important user constituencies as the doctors and nurse
practitioners who documented their daily assessments of various
problems their infant patients exhibited, and their plans for
treating those problems.> This description of problems and

> The process of reviewing subjective and objective data
collected on a patient’s problem, then writing an assessment and
a plan for treating that problem is commonly done by
physicians. The resulting document is often referred to as a
SOAP note.

documentation of the daily “assessments and plans” took place
at patient admission, every day of the patient’s stay, and at
patient discharge. Replacing this bit of the software directly
impacted this focal user constituency and the tasks they
performed every day as part of their work. This bit of
functionality we called Patient Problem Management, or PPM,
represented about 30 of our 80 user tasks. This was what our
first production release should be.

Now our initial 600-700 user stories had been distilled down to a
product of 80 user tasks, with a first production release taking in
30 of those. We were seeing light at the end of the tunnel.

6.4 Building the Release Strategy Using a
Span Plan

We’d decided our first production release should be patient
problem management — PPM. We had only the user tasks to
account for the scope. Clearly these user tasks were too big to
fit our definition of user story — the definition that allowed each
of them to be completed with a single iteration. But, that said,
they were clear enough that experienced developers could give
course grain estimates on them. They’d seen and built software
similar to this, and they could read the user task and imagine
sort of how it might look on the screen, then give rough
estimates in weeks rather than days®. Using course grain
estimates it was relatively simple to estimate the user tasks and
doing so left us with a rough estimate that indicated it would
take about 6 months for the work to be completed given our
current team size.

Agile approaches prize frequent product delivery and for us six
months wasn’t frequent enough. We needed to chunk out this
functionality into two or more releases that allowed us to see
and evaluate the software earlier. An early internal release
would allow us to validate our detailed design choices with our
end users, test our architectural design for dependability and
scalability, and react to anything we’d learned with additions or
changes to scope.

To select a first set of functionality to release we knew we
needed a set of tasks that would best represent the entire end-to-
end business process. In their book Lean Software Development
[13], Tom and Mary Poppendiek refer to this end-to-end
business process as the system span. To find the system span we
used a blended task modeling and planning technique referred to
as span planning. [12]. The span plan arranges user tasks
written on cards from left to right in order of dependency; then
arranges tasks top to bottom in order of criticality to the business
process. Tasks that must happen in the business process bubble
to the top of the model. Tasks that must be completed before
another task is started fall to the left and right of each other
respectively. The result is an easy picture that both describes
workflow, and by slicing the model left to right starting at the

top and working to the bottom, suggests best possible groups of
features to release as complete system spans.

* It’s interesting to note that while Agile projects today consider
a story as something that can be completed within an iteration,
in 2000 Extreme Programming Explained [1] defines a story as
“one to five ideal programming weeks.”

Figure 3: NICU PPM Span Plan hanging from cubicle walls in the Agile team area

Figure 3 shows the span plan used for the HCP’s PPM system.
The heavy line left to right in the middle of the model shows
where we chose to divide the functionality into two candidate
releases. The clever reader might note that there are more than
30 task cards in the model. Through more discussion some of
the larger tasks were split into multiple smaller tasks. This is
done by looking closer at the goal level. One sea-level task can
casily be decomposed into multiple fish-level tasks.

The span plan was built collaboratively by the Agile customer
team with some developer involvement. Building, and
periodically rebuilding, the span plan not only helps release
planning, but helps confirm and improve upon everyone’s
understanding of the business process.

6.5 Story Writing from a Span Plan

The span plan gave us a high level view of functionality covered
in the release expressed in user tasks. But, like the brushing
teeth example used earlier, at some point in time we need to
decide that we need a toothbrush, and give our toothbrush maker
an idea of how that might look. Our user tasks needed to be
expressed as stories to release into our iterative development
cycles.

Before, we didn’t have a clear idea of where to start elaborating
our user stories. Now the span plan gave us some guidance:
start at the top left and work our way to the right and down.

For each user task we thought about the steps a user might likely
take in the course of doing that task. With those steps in mind
we constructed low fidelity paper prototypes for the user
interface that might satisfy that task. We used a thought process
best described in Constantine et al’s paper: From Abstraction to
Realization [6].

Thinking about Garrett’s Elements model, we knew that tasks
cluster themselves together in parts of the user interface. This
clustering of tasks formed our applications structure. Knowing
that, we layered support for multiple tasks into the screens we’d
prototyped. Designing the screens to support the workflow of
multiple tasks is the work done in the skeleton layer of Garrett’s
Elements model.

With simple Ul prototypes for the screens that supported our
most important tasks, we could begin to write user stories. The
screen designs made that jump between task and tools to support
it — brush teeth to toothbrush. Now we could write stories about
these screens. Those simple story narratives paired with the
low-fi UI prototypes gave developers what they needed to more
accurately estimate and build the software.

6.6 Binding Stories to User Tasks

Each story we wrote for development was connected with at
least one user task. Important to project managers was the idea
that each story was connected to the course grain development
estimate given to that task. As we built the software, we needed
to be sure that the time estimates for stories didn’t exceed, at
least by too much, the initial estimates given to tasks.

To keep track of this we used a numbering system that made it
casy. User tasks were numbered sequentially. Stories
applicable to a task were given a decimal number relating back
to the original task. For example stories written for task 10 were
numbered 10.1, 10.2, 10.3, and so on. At any time it was easy to
roll up story estimates and compare them to the original task
estimate to see if we were going over budget. At any time we
could see how many stories had been written against a particular
user task.

Over time we began to refer to our user tasks as “planning-
grade” stories. By this we meant stories small enough to plan
with, but too large to build from.

7. REFLECTING ON THE APPROACH
AND RESULTS
7.1 Less is More

HCP’s old processes leveraged face to face communication in
requirements sessions held during an initial requirements phase.
With the change to an Agile approach and the addition of
continuously involved people in the customer role, that face to
face communication between the developers and expert users
was lost — replaced by Agile customers. Although those in the
customer role were experts, they needed to discover quick ways
to acquire and retain the understanding of the time-constrained
experts, then effectively communicate that understanding back
to developers. Building artifacts like task models and in
particular the span plan helped to do that.

Diving down early into writing user stories wasn’t productive.
The stories the expert users initially chose to elaborate actually
didn’t end up being the stories included in the first or even
second prospective release.

Stories written at the level of granularity most useful for
estimation and planning iterations seemed too granular for
release planning.

Prioritizing detailed user stories was hard when the stories
referred directly to the design solution. For example we might
know that it was critical for the user to be able to accomplish a
particular task, but if the story described a particularly elaborate
way of doing it, was the story high or low priority? What
happened when the task was high priority, but we needed a less
claborate and less expensive way for the user to accomplish that
task? In those cases the story in the backlog was a distraction
from what the user really needed to accomplish.

By working with user tasks, much of the design work had been
deferred until later. This made for lots of hard work for the
Agile customers to elaborate stories ahead of iterations.

Managing scope as user tasks did make many stakeholders
uneasy. It seemed like we were losing important details.

Using fewer planning grade stories and having a clear release
objective helped release planning proceed and productive story
writing to begin.

7.2 Recommendations for Agile Projects
Based on our experience planning and writing stories for HCPs
NICU project we’d make the following recommendations for
Agile teams:

Clearly identify the business goals for a product release. Fewer
goals are better than more goals. Measurable goals are better
than intangible goals.

If you aren’t a user of your software, spend time observing your
users engaged in doing their work.

Use a course grain planning-grade story to initially scope your
project. Using fewer stories allows you to more easily prioritize
and chunk them into releases.

Good planning-grade stories might take the form of a UCD task
or a Use Case written at a function or sub-function goal level.

Avoid premature elaboration. Choose to support the user task as
part of release planning. Decide exactly how as part of detail
story writing.

As important details and considerations emerge, capture and
associate those user details with your user tasks — or planning-
grade stories. As you write detailed stories, move those details
from the planning grade story to the detailed story.

Use some visual model such as a span plan to give the
development team and stakeholders a single high level view of
the product you’re working on.

Use paper prototyping to design and validate the design of user
interface prior to describing it in a user story.

8. CONCLUSIONS

While the iterative development approaches found in Agile
Software Development fulfill the promise of working software
each iteration, the task of choosing which software to build first
can be formidable. While simple guidelines like ‘“choose
features with the highest business value” may seem useful, what
really has high business value may not be clear. On large
projects, features described as user stories might easily number
in the hundreds. Prioritizing such a list can be exhausting and
frustrating.

In our project we found that adopting a strategy of writing fine-
grain stories as we had in the past left us lost in the details — we
couldn’t see the forest for the trees. As a result we couldn’t
effectively prioritize work and construct a release plan. We
couldn’t effectively communicate to stakeholders how we could
begin to release software to deal with their problems.

Adopting some techniques from a user centered design approach
helped us see the forest in the trees. We clearly identified
business goals, critical user constituencies and their goals, and
built task models that helped us understand their workflow.
Using user tasks as planning-grade user stories we were then
better able to prioritize, estimate, and build a good candidate
release plan. Using that release plan we were able to begin
writing detailed user stories for the most important work.

9. ACKNOWLEDGEMENTS

Thanks to the hard work of the team at HCP including Jean,
Larry, Tom, Tara, Becky, Sherri, Tiffany, and many others.
Thanks to Robert Biddle for his encouragement and Alistair
Cockburn for his discussion and support. Thanks to the team at
ThoughtWorks for their support and participation. Thanks
finally to Stacy for without her support I’d not finish a single
thing.

10. REFERENCES

[1] Beck, K. Extreme Programming Explained. Addison-
Wesley, 2000.

[2] Beck, K. Test Driven Development: By Example.
Addison-Wesley, 2002.

[3] Beyer, H. and Holtzblatt, K. Contextual Design: A
Customer-Centered Approach to Systems Designs. Morgan
Kaufmann, 1997.

Cockburn, A. Writing Effective Use Cases. Addison-
Wesley, 2000.

Cockburn, A. Agile Software Development. Addison-
Wesley, 2001.

Constantine, L., Windl, H., Noble, J. and Lockwood, L.
From Abstraction to Realization: Abstract Prototypes
Based on Canonical Components. ForUse Website, July
2003, http://www.foruse.com/articles/canonical.pdf

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. Refactoring : Improving the Design of Existing Code.
Addison-Wesley, 1999.

Fowler, M. Patterns for Enterprise Application
Architecture. Addison-Wesley, 2002.

Garret, J. J. The Elements of User Experience: User-
Centered for the Web. New Riders Press, 2002.

[10] Norman, D. and Draper, S. User Centered System Design:
New Perspectives on Human-Computer Interaction.
Lawrence Erlbaum Associates, 1986.

[11] Palmer, S. and Felsing, J. A Practical Guide to Feature
Driven Development. Prentice Hall, 2002.

[12] Patton, J. It’s All in How You Slice It. Better Software
Magazine, January 2005,
http://www.abstractics.com/papers/HowY ouSlicelt.pdf

[13] Poppendiek, M. and Poppendiek, T. Lean Software
Development: AnAgile Toolkit for Sofiware Development
Managers. Addison-Wesley, 2003.

[14] Schwaber, K. and Beedle, M. Agile Sofiware Development
with SCRUM. Prentice Hall, 2001.

