
Agile Story Essentials

Use cards as the tokens for the conversations you’ll use to plan,
design, describe, construct, and validate your product

Card

Write your
product ideas
on cards, one
per card.

Map the Whole System

Map a whole process as it crosses through a number of types of users

Story maps are for looking at the big picture

©2013 Comakers LLC, www.comakewith.us, youshould@comakewith.us for more info

©	
 2009-­‐2012	
 Comakers	
 LLC,	
 www.comakewith.us	

What’s on the card

Use story cards, or items in backlogs they way you might
cards in a library card catalog. Write just enough
information on them to help you find the rest of the
details when you need to. Use the card or list item to
organize stories, prioritize, and plan.

On a typical card you’ll find:

Stories are for telling

In the late 1990’s Kent Beck had a simple idea to solve one of the biggest
challenges in software development: communicating the details of what to build.
By simply getting together and “telling our stories” we could build shared
understanding in the minds of everyone involved.

In the conversation we’d focus not only on what to build, but who would use the
software and why. Our goal is to identify the most valuable thing we could most
economically build.

Stories get their name from how they’re used
and not how they’re written

What I was thinking of was the way
users sometimes tell stories about the
cool new things the software they use
does:

“I type in the zip code and it
automatically fills in the city
and state without me having
to touch a button!”

I think that was the example that
triggered the idea. If you can tell
stories about what the software does
and generate energy and interest and
a vision in your listener's mind, then
why not tell stories before the software
does it?

?!!!

!! !!

!!!! !! ?!?!

Conversation

Discuss your ideas with others. Let
them ask lots of questions. Work
together to come up with ideal
solutions. The goal is to build
shared understanding.

Confirmation

Bring models, personas, UI
drawings or whatever you like
into the conversation. Identify
ideal solutions and draw new
models. Work towards
agreement on what to build.
Record that agreement as a set
of confirmation tests.

Construction

Developers, testers, and others equipped with information
from conversations and the shared understanding that
comes with it build and test the software.

Consequences

Now we’ve got working software to learn
from. Those who originally asked for it and
the builders evaluate. But, the software
was likely for other users. You’ll need to
test the working software with them to see
if it meets their needs. The goal is learning.
And your ideas for improvement start the
cycle again.

“Talk & Doc”

You’ll have many discussions around stories with team
members in a variety of roles. Draw pictures and record details
as you do.

Bring models like workflow models, use cases, UI designs, or
anything else that helps you explain the story. But, be prepared
to modify it during the conversation.

Draw on whiteboards, model with post-it notes, or record on
flipchart paper during your discussions.

Keep models from your discussions as mementos to help you
remember the details discussed.

Before you build, agree on
what you’re building

Before the team makes a commitment to build software
described by a story, agree on acceptance criteria for the
software. Record the answers to these questions:

•  What will we test to confirm that this story is
done?	

•  How will we demonstrate this software at a
product review?	

Shared Understanding

When we all read the same document or hear the same

discussed, we often imagine different things. It’s describing
our understanding with words and pictures, and then
combining and refining our ideas that leads to shared

understanding.

Shared documents are not

shared understanding

Kent Beck, author of

Extreme Programming
Explained

For every story in your backlog, put in
three cards. The first is what you
want, the second one is there to
remind you to fix the first one. The
third is to remind you to fix it again.
You’ve got to iterate or you’re not
doing it right.

A story is a token for a conversation

Short title! One that’s easy to read in
backlogs and easy say in standup
meetings

If you catch yourself referring to
the story by it’s number, stop it

Description! If the title isn’t enough, write a
description. Try to include who,
what, and why. The template
could be handy here.

Meta-
Information!

•  Estimated development time

•  Estimated value

•  Dependencies

•  Status

When writing
story tests, use
examples. See
Gojko Adzic’s
Specification by
Example for
valuable tips.

Story cards arranged as a map
with UI sketches added in.

Story discussions supported by
flip chart paper & drawings

Acceptance criteria recorded on
flipchart paper

Vacation Photos

The information, drawings, and models you

record during conversations are mementos that
help you remember many more details than you

can capture. People that weren’t there won’t
remember – just like they wouldn’t recall

anything when seeing your vacation photos.

Stories: Concept to Delivery

Progressively split and refine stories as you move them from vague
idea through to working software

Opportunities

Create an opportunity backlog
from product ideas, and customer,
user, and stakeholder requests.

Discovery

Use discovery to elaborate, design,
and validate product ideas. Your
goal is to identify the smallest viable
product you can. Discovery work
results in a product backlog.!

Delivery

During delivery you’ll focus on
designing, decomposing, and
describing backlog items.

Validation

Review finished software with the
team and stakeholders. Validate
product parts with customers and
users.

Release

After your software is released,
continue to measure the product’s
performance relative to its target
outcomes. The most valuable
opportunities come after seeing the
product in use.

Enough to test
with users

Stories you complete in a
single sprint might appear
insignificant to users. Gather
enough finished tested
product parts to validate
users can reach a meaningful
goal before testing.

Enough to
release

Gather enough validate
product parts that they sum
up to a valuable product
release.

End Game

Over time the value of
stories begin to
diminish signaling it’s
time for release

Mid Game

Once we’re confident
we have the “shape”
of the product right,
we begin to pile in
value

Opening
Game
Early stories emphasize
iteration and learning.
We need to be sure
we’re building the
right product

timea
c

q
ui

re
d

 p
ro

d
uc

t k
no

w
le

d
g

e

Work like da Vinci to finish on time

When managing a release budget, split larger stories into “opening game,” “mid game”
and “ending game” stories.

Try to get the “big picture” as soon as possible. Early versions that are fully formed but
immature allow early functional and performance testing. They allow earlier validation
that your concept is right.

When splitting stories, think cake

Use each story to describe an piece of software you can “taste.” That is, once
you’ve built it, you should be able to learn something from having done so. Whole
features may have value to customers and users. But, it often takes a few stories
to add up to a whole feature.

The steps for making software are development tasks.

Demonstrable, testable software is the result of those tasks. If the software doesn’t
have user interface, you’ll need to find another way to show that it works.

Stories

Stories describe
something you can
delivery and evaluate

Delivery Tasks

Delivery tasks give the “recipe” – describe
the work someone needs to do to create
the story

Decompose stories into
smaller deliverable stories

Smaller stories often have similar recipes, just less of
any one ingredient. For example all stories will have
some testing, smaller stories should take less time
than larger stories.

Decompose

Story Workshop
Product team members meet
with delivery team member
regularly to work through story
details and agree on
acceptance criteria

Some call these workshops
backlog refinement or backlog
grooming meetings. But they're
really the story conversations we
need to have

Product Team
Planning
The product team meets
routinely to discuss release
progress, select stories for
upcoming sprints/iterations, and
plan the work needed to get
stories ready for the delivery
team.

Product
Discovery
Product discovery is the
work we do to determine
what we should build.
Use discovery to answer
questions:

1.  What problems are we
solving, and for who?

2.  What solutions will
customers and users
value?

3.  What are usable
solutions?

4.  What’s feasible to
build given the time
and tools we have?

Opportunity
Assessment
Before spending time
going into details on any
idea, discuss who the
product, feature, or
improvement is for, what
benefit it will bring by
building it, and how much
it could cost if it’s similar
to other solutions we’ve
built. Use the results of this
conversation to prioritize
opportunities, and to
make go/no-go
decisions.

Slice your possible product
backlog into what you’ll need
for multiple viable product or
feature releases.

Development
Strategy

Try using a story map to slice
a feature into opening, mid,

and end-game parts.

Release Strategy

During Discovery, try using a story map to

slice a while product or feature into a
series of viable releases.

Target
outcome

Outcome-
centric
roadmap

MVP

