
24 BETTER SOFTWARE NOVEMBER/DECEMBER 2009 www.StickyMinds.com

IS
TO

CK
PH

O
TO

mutual concern—the software they’d all
like to see developed.

It’s difficult to engage in conversations
without emphasizing our own concerns.
A story that works well as a boundary
object has meaning to everyone involved
with the project but isn’t so specific that
it loses meaning for any one person.
Extra-specific details cloud the conversa-
tion and erode the value of the story.

Of course, individuals need all those
details, and the details do need to be dis-
cussed. The trick is to keep very specific
details to yourself. Understand that they
are only relevant to some conversations
you need to have, and keep them handy
for those conversations.

Organizing the PriOritized StOry
BacklOg

User stories that describe only a
small chunk of software are quicker
to code and test and, when completed,
show progress. Showing progress in the
form of working software is an impor-

tant characteristic of agile development.
If I’m scheduling work into a short
timebox or sprint, or figuring out the de-
tails of software to build and test, small
is good. But small is a relative term. The
ideal-size story from a user’s perspective
may be far too large from a developer’s
perspective.

A common goal in agile—and spe-
cifically in the Scrum community—is
maintaining a “prioritized backlog.”
Organizing user stories into a backlog

The User Story has
emerged as a standard practice
in agile development processes.

While the idea of user stories is simple
on the surface, there are challenges to
working with them—particularly when
working with the multiple stories re-
quired to create a successful product.
User story mapping is a useful way to
organize, decompose, and prioritize user
stories. A good story map keeps conver-
sation about your product alive and pro-
ductive throughout its construction. But,
to understand user story mapping, we
first need to understand user stories.

User Stories
USer StOrieS are fOr cOnverSatiOn

When I ask people for a definition of
user story, the most common response I
receive is “a token for a conversation.”
Extreme Programming (XP) popularized
user stories and that particular defini-
tion, which came from Alistair Cock-
burn during some of the earliest discus-
sions about XP. The name “user story”
comes from the idea that we should tell
the “story” of what’s needed and why it’s
valuable and not just document require-
ments. In telling the story, we’ll arrive at
a better idea of what to build. Having
that conversation is the most important
aspect of the user story.

A user story is a boundary object—a
point of agreement that different groups
with different concerns use to collabo-
rate. While every group uses the same
name for the story, each tends to con-
sider only its own concerns while dis-
cussing stories. Users think of the stories
as descriptions of their needs. Business
people think of them as product features
that will generate return on investment.
Developers	 think	 of	 them	 as	 the	 speci-
fications for software to build. Testers
think of them as things they need to vali-
date. Project managers think of them as
work to schedule into a release. All of
these views are correct, but all of them
are also incomplete.

A user story isn’t an ideal user
problem description, software specifica-
tion, test script, or project management
task. It’s the token that allows these
communities to think about their own
needs while they collaborate over their

allows us to prioritize and schedule
both the detailed conversations about
the stories and their construction. But,
when the backlog consists of hundreds
of stories, it can be virtually impossible
to create a mental picture of the product
as a whole.

People looking at a prioritized
backlog can have good conversations
about the schedule, but other conversa-
tions about the product can be difficult.
It’s not enough to write stories and pri-
oritize your backlog for implementation.
A backlog that really supports conversa-
tion has three important qualities:

Descriptive—It helps us understand
the users and their needs and how the
software addresses those needs. It helps
us visualize the entire product.

Right sized—High-level conversa-
tions have high-level stories; detailed
conversations have more detailed sto-
ries. Conversations must be enabled at
the executive level and at the detailed
development level.

Prioritized—The most valuable items,
the ones we need to focus on first, can
easily be identified.

USer StOry MaPPing
A user story map places high-level

stories in a meaningful order, typically
left to right and top to bottom as shown
in figure 1. Often, this reflects the user’s
workflow order or business process and
allows us to tell a meaningful story about
a significant part of the entire system

26 BETTER SOFTWARE NOVEMBER/DECEMBER 2009 www.StickyMinds.com

Figure 1: User Story Mapping

5. Choose the flights.
6. Pay for the flight.

I’ll write these user tasks down on
stickies and lay them out left to right. On
a different color sticky, I write “Booking
a flight” and place the sticky on top of
my neat row as shown in figure 2.

I used the phrase “user task” to de-
scribe things a user would like to ac-
complish. User tasks usually start with a
verb to help us understand what they’re
doing. We’ll call these “task-centric user
stories.”

To help us remember that user stories
should be about users, this popular tem-
plate has emerged:

As a [type of user],
I want to [do something]
so that [I get some value].

I like using this template to check my
stories: “As a traveler, I want to choose
the flights I like so that I can fly at the
times that suit my travel plans.” How-
ever, I don’t write all those words be-
cause I don’t need them. The “working
words” are the short verb phrases such
as “choose the flights.” That’s the least I
can write and still be clear enough about
what a user of a booking system would
want to do. Writing too many words
makes the map hard to read and dimin-
ishes its value as a conversation piece.

At the outset, we’ll want to identify
the full breadth of a potential system.
Think of the other big activities that
people might engage in with the reserva-
tion system. Based on my experience, my
initial list is:

1. Change my flight.
2. Check in.
3. Book a flight I often take.

 www.StickyMinds.com NOVEMBER/DECEMBER 2009 BETTER SOFTWARE 27

I could go on, and, if I were building
such a system, I would.

These big activities bundle a number
of smaller user tasks performed to
achieve a larger goal. These smaller
tasks often can be performed in varying
order. For instance, I might stop halfway
through booking a flight and go back to
the beginning. I might always do some
smaller tasks, like choosing flight dates,
and rarely do others, like selecting spe-
cial meal options. But, all those smaller
tasks support a common goal—the user
activity.

Because I know that when I’m en-
gaged in an activity like “booking a
flight” I might skip steps or back up, I
don’t get too concerned about the order
in which I put the stickies. They’re in the
order that helps me best discuss it with
others.

In Mike Cohn’s book User Stories
Applied, he coins the term “epic” to
refer to a big user story, one that should
be broken down further before placing
the story into a next sprint or iteration.
These user-centric activities that we’ve
placed as top-level stories in our map
are likely “epics.” But, the task-centric
stories we’ve placed as mid-level stories
could be as well. At this point, they’re all
too big and too poorly understood to be
built, so don’t get caught up in the epic
versus story distinction.

Thinking through the user experi-
ence as activities and tasks will give you
a beginning story map a mile wide and
an inch deep. Building the story map is
often eye opening. For developers and
testers who may be used to focusing
on the details, this may be the first time
they’ve seen the big picture.

without getting lost in the details. These
top-level stories form the backbone of
our application.

Below each of the top stories is a sim-
ilar left-to-right “decomposition” of that
story into mid-level stories that break it
down. The mid-level stories could be the
steps in a business process or details of
an activity in which a person engages.
During	 a	 conversation,	 we	 can	 drop	
down to this level to dig into the details
of any one top-level story. Below each of
these mid-level stories are more stories
that decompose into more detailed sto-
ries. To save space, we stack the detailed
stories in a nice vertical column.

So far, the shape of the map has
helped us get to the descriptive and right-
sized qualities we need now to layer in
prioritization. The map is “sliced” into
product releases. We’ll only slice the de-
tailed stories since they’re the smallest
bits—the parts we’re likely to build in a
short iteration or sprint. Slicing the map
lets us see what’s in each release over
time and how the top stories grow in ca-
pability with each release.

With a story map, it’s easy to spot
holes in our conversations—places where
the story map is lacking and where more
mid-level or detailed stories should be
identified. In some cases, we’ll identify
planned omissions—places where we’ve
purposely deferred functionality for later
release.

Working with Story
Maps

Working with a story map follows a
simple process:

1. create a StOry MaP
Start by identifying user stories and

arranging them into the shape of a story
map. Focus on breadth, not depth. The
fastest way to generate a lot of sto-
ries is to think through a user’s experi-
ence. Let’s consider “booking an airline
flight,” since most of us have had this
experience.

The basic tasks to book a flight are:
1. Choose an origin and destina-

tion.
2. Choose the departure and return

dates.
3. Search for flights.
4. Review the flight options.

Figure 2

28 BETTER SOFTWARE NOVEMBER/DECEMBER 2009 www.StickyMinds.com

Each kind of user is coming to our
booking system with varying amounts
of experience but with a goal in mind.
These are user roles, and they overlap
a bit. Think of roles like hats you wear
and can change as your goal changes.
For example, I’m often a frequent busi-
ness traveler, but sometimes I’m a family
vacation booker. And, because I’m a
cheapskate, I always have a bit of price
shopper in me.

If I put on my frequent business trav-
eler hat and walk the story map, I re-
member my goals a bit better and add
to my tasks. I often “check my current
mileage balance” and “place my name
on the first-class upgrade list.” I hate
spending too much time on planes so,
while reviewing my flight options, I al-
ways “look at the number of stops” and
“look for shortest flight duration.”

When I put my family vacation
booker hat on, I remember other tasks
like “entering family member names and
ages” and “saving flight itineraries to
discuss later” with my wife, who needs
to make this decision with me.

Understanding different types of
users and walking the map from their
perspective expand the map with things
you might have forgotten otherwise.

It’s also a good idea to begin walking
the map with others on the team in-
cluding engineers, testers, and other

stakeholders. They begin to understand
the user’s experience and why it is the
way it is. They can point out areas where
writing software to support such a user
task may be difficult. Or, better yet,
when armed with a good understanding
of the user experience, they can identify
product solution ideas that would really
help the users.

As you fill in and validate the map,
you’ll add, split, reorganize, and anno-
tate stories with details and cool solu-
tion ideas. As you walk and talk through
the story map with a variety of people,
you’ll gain confidence that it’s complete.

When you’re comfortable that you
haven’t left out anything big, it’s time to
move on to make choices about what to
build now, what to build later, and, pos-
sibly, what never to build at all.

3. Plan releaSeS
Armed with a strong understanding,

we can begin to prioritize what’s most
important to implement in our soft-
ware and what we might be able to do
without. We then can slice our map into
coherent releases of detailed stories.

When trying to identify what to build
first, I focus on two levels of planning.
First, I think about what I should re-
lease first to create a minimally viable
product and what should come next in
my product roadmap. This is called re-
lease planning. Knowing the goals of a
first release allows me to focus on what
to build in that first release. I’ll target
functionality that helps me learn fast
about the product. I’ll try to create a
fully functional “walking skeleton” [1]
of the product as soon as possible. Keep
these two levels of planning in mind as
you start to prioritize stories.

If I had a nickel for every time I heard
someone say, “Prioritization is my big-
gest challenge when working with sto-
ries,” I’d have a lot of nickels. The trick
to prioritization is not to work with the
stories first but to work outside in the
product’s context. By context, I mean
the customers and users of our product
and the business strategy that motivates
building the product.

We have previously identified a few
user types such as frequent business trav-
eler and family vacation booker. Start by
prioritizing those.

2. fill in and validate
Once the map looks right, start diving

a	 bit	 deeper.	 Discussing	 the	 map	 with	
others helps you identify missing stories
or alternative ways of doing things.

Let’s go back to “booking a flight”
and start with the task “choose an origin
and destination.” Thinking about the
details, we can identify smaller sub-tasks
inside that task: “enter airport code,”
“enter city name,” or “look up airport
code.” Since I travel to New York City
frequently, and three major airports
serve that area, I often “choose to in-
clude nearby airports” in my search. All
these are tasks I write on stickies and
hang below the “choose an origin and
destination”	sticky.	Doing	this	for	all	the	
mid-level, task-centric stories in the user-
centric story at the top results in a more
complete map.

But, I’m a frequent flyer and prob-
ably not the best example of all the types
of users who might interact with this
system.

I took a moment to brainstorm dif-
ferent kinds of users who could use our
system and add them to my map, as
shown in figure 3.
•	 Frequent	business	traveler
•	 Family	vacation	booker
•	 Price	shopper
•	 Infrequent,	perplexed	traveler

Figure 3

smallest first slice that will support your
target user and business strategy.

While planning, we may split stories,
add more stories, reword stories to make
them clearer, or reorganize the map to
better support discussion.

At the end of this exercise, we have a
release roadmap ordered top to bottom
where each slice should be in a coherent
product release. We can test a slice’s co-
herence by walking it left to right and
talking through a user’s experience. If
we start with our highest priority user
and describe his experience, pointing out
stories as we go, we do so only by dis-
cussing stories inside the release slice. If
we can’t tell the big story of our user’s
experience with the first release without
dipping down into second-release func-
tionality, then we know we have not in-
cluded sufficient functionality.

When you’re comfortable with a re-
lease plan, you can summarize each slice
or release by giving it a name, writing a
couple of short sentences expressing the
business benefit for building it and what
the user’s benefit is when using it. This
list of names and benefits—along with
a few bulleted, high-level stories—is our
product roadmap.

4. cOnStrUct SOftware
It’s time to get to work building

something. Working with the detailed
stories and moving story by story, we’ll
choose what we’d like to implement in
the upcoming development cycle. Over
time, we see the stories in our release
being completed.
During	 product	 construction,	 keep	

the story map visible so it can help give
context to further detailed discussions.
Ignore the slices for releases other than
the one on which you’re working. I re-
move them from the story map com-
pletely, setting them aside to discuss as
we get ready for the next release. Break
the current release again into three
thinner slices. Using a chess game meta-
phor, I call the slices “opening game,”
“mid game,” and “end game.”

The opening game slice contains the
simplest possible functional version of
the product. Remember, we’re not re-
leasing yet, so it doesn’t need to be release
ready. But, it should help us validate our
functional scope, our architecture, and,

Now, whether business travelers or
vacation bookers are more important to
our organization depends on what we’re
trying to do with the product. Are we
trying to build the best business travel
site on the Web? Or, do we think that
the vacation planner is an underserved
market and we’d do best to focus on
them? These sorts of decisions are stra-
tegic	business	decisions.	Don’t	try	to	pri-
oritize details about what to build until
you’re clear on the business strategy.

Business stakeholders ideally will
make strategy decisions informed by
market research, revenue- or cost-saving
goals, or other considerations. Once
those decisions are made, we can see
more clearly which users are most crit-
ical to realizing our business strategy.
Given that, we can begin to prioritize
what those users need to do with the
system.

The left-to-right organization of the
story map supports good discussion.
The top-to-bottom organization shows
decomposition. When it comes time to
build specific bits of sofware, it’s the
smallest detail stories that we’ll want to
build, so they’re the ones we’ll prioritize
into releases.

I like to do prioritizing as a group so
we’re all on the same page. First, post
and discuss the business strategy and or-
ganize the user types into priority order.
Then, create slices in our story map by
adding tapelines left to right to create
horizontal slices, each representing a re-
lease.

Together, we’ll begin moving the
smallest stories up into their respective
release slices. The first release slice on the
top should contain all the stories needed
to deliver our minimal viable product.
Each slice below that will add a layer of
capability to build up the product one
release at a time.
Don’t	 get	 tangled	 up	 in	 prioritizing	

one high-level or mid-level story against
another. It doesn’t do any good to de-
bate “What’s higher priority: choosing
origin and destination or entering travel
dates?” It’s an irrelevant question since
we know the product needs to support
the activity of booking a flight and both
tasks are critical for that. Focus on the
detail-level stories and what slice they
belong in. Focus on identifying the

at the end, be able to support end-to-end
performance and load testing. It ideally
contains a little bit from every major ac-
tivity in the system. I refer to these ac-
tivities as the “backbone” and this very
thin, not quite releasable product, as our
“walking skeleton.”

Mid game stories focus on getting the
system to full functional completeness.
It’s important in mid game to ramp up
the amount of validation we do with
users and with the system architecture.

End game stories focus on polish, fit,
and finish. We’ll need to make sure we
have time during end game to accommo-
date all the “predictably unpredictable”
work that comes in as a result of the
user validation and other testing we’ve
been doing.

Keep Your Eye on the
Prize

Keeping your eye on a coherent,
growing system and constantly evalu-
ating it against the benefits you targeted
in your release plan are critical. And, it’s
not something one person does alone.
The entire team needs to help keep an
eye on these things.

Keep visible your business strategy,
target user types, release roadmap, and
user story map. Mark off stories that are
done.	Discuss	how	ready	your	product	is	
to release at a high level, user activity by
user activity. Use the map to pull your
attention away from the minutia of day-
to-day work and back to the big picture
of the product you’re growing. {end}

 www.StickyMinds.com NOVEMBER/DECEMBER 2009 BETTER SOFTWARE 29

