Manage People & Projects

It's All In
How You

Climna

L ® J | LV 4 v

Design your project in
working to avoid
Incremental
releases. BY JEFF PATTO|\ SUPPOSE FOR A MOMENT YOU'RE IN CHARGE OF

development at BigNewldea Software. You've

adopted an Agile development approach that

suggests releasing your software in smaller

incremental releases is a good idea.
BigNewldea's marketing folks and business managers exclaim excitedly, “If we build the highest-
value features first, the users will love our first release!” You develop for a few months, always
shifting the highest-value features to the top of the stack. You eventually release a well-built, rela-
tively bug-free release. First responses from people using the software seem positive. “This looks
really good!” they say. “It's got all these features we've wanted for a long time!” But strangely,
sales seem to be slower than expected. Salespeople find that many customers who have pur-
chased the software aren’t actually using it. “What's wrong?” marketing asks through question-
naires and expensive focus groups. The reply: “"What you have is fine, but there’s not enough here

16 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com

TOM SCHIERLITZ/GETTY IMAGES

Manage People & Projects

for me to get my job done. I still have to
do much of my work manually. I have to
transfer information from my paperwork
to the software and back again. Some-
times I can’t even figure out a paper
workaround. I'll wait for the next release
to see if you get farther along.”

You expected that all those high-value
features would make a great product, but
it turned out you needed some of those
low-value features to hold everything to-
gether—to make the product useful to
those trying to accomplish work with the
software. If you still want to release the
software incrementally, how do you
choose a first bundle of features that is
both high value and immediately useful?

2-3 large sheets poster paper
3-4 packs markers

1 roll tape

1-2 packs 3x5 index cards

Plus, the fundamental element of all good
meetings: food.

In this article, we’ll walk through a sim-
ple, collaborative, card-based planning
model that does just that.

PREP WORK

Before you begin, you need to choose a
good cross section of folks to participate
in creating the model. While the model
could be prepared by one person, I
wouldn’t recommend it. Having a mix of
people will help increase understanding
of the software throughout the team.
Choose people familiar with the users
and functionality of your software, such

as domain experts, testers, and user inter-
face designers. Choose people who have
some ideas on how the software will earn
your company money—your stakehold-
ers. Choose people who know something
about how long this work will take to
build—a developer or two. Four to eight

people total is a good number. Use the
creation of the model as an opportunity
to elicit discussion about the features be-
ing built.

STEP 1: COLLECT FEATURES

With the prep work done, it’s time to
start assembling the model. The first step
is to answer the question “What does our
software do?” You should start with a
user-centric list of features. De-
pending on your situation, this
might be trickier than it sounds.
My definition of a good feature
is one that is expressed from a
user’s perspective. For example, if I
were building new software for a
retail store, a feature might be “sell
items at point of sale” as opposed
to “the system supports EAN-13
barcodes.” There’s a difference
there that I hope is not so subtle.
The first feature describes an activ-
ity done by a person; the second
describes an attribute of an object.
Look for features that start with or
include some action verb; that’s a
good sign. When describing your soft-
ware, it helps to indicate how it will be
used rather than how it might look or the
details of its implementation. Keeping
your focus on the usefulness of the soft-
ware at this stage helps to ensure that the
bits of software released incrementally
will be useful.

If you’re not already describing fea-
tures for your software in a user-centric
way, you may need to spend a little time
reframing your features.

Write the features on 3x5 cards or on
something else that you can easily move

18 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com

around in your model. I’ve found it’s easy
to merge features originating in a spread-
sheet with a word processor document
that will print them on precut 3x5 cards
or business cards. This way, the cards are
easy to read and work well within a card-
modeling exercise. Leave room under the
feature statement for the details we’ll add
in Steps 2 and 3.

Suppose I'm building some software
for small retailers. I know that their busi-
ness processes go a bit like this (notice
that each one starts with an action verb):

= Create purchase order for vendor
= Receive shipment from vendor

= Create tags for received items

= Sell items

= Return and refund items

= Analyze sales

STEP 2: ADD DETAILS

To help you model these features, let’s
note three important details on the
cards: who uses the feature, how often
the feature is used, and how valuable the
feature is.

First, for each feature, detail the kind
of user who uses it. When describing this
feature, you likely envisioned someone
using it—who was he? You can identify
him with a job title, a role name, a per-
sona, or in any other way most appropri-
ate for your system. (See this issue’s
StickyNotes for more on roles.)

Looking back at my set of retail store
features, I know that the same person
usually doesn’t do all this stuff. I know
that the work is divided between mer-
chandise buyers, stock receivers, cus-
tomer consultants, and sales analysts. 1
note each user under the feature state-

create po

for vendor
(merchandise buyer)
frequency: weekly

value: medium

Figure 1: A completed feature card.

When assembling the batch of features for your project, pay at-
tention to the following details to help ensure success.

When using use cases, focus first on those where the actors
are a single user and the system. Avoid planning with use cases
that describe the internal workings of the system. Avoid use cas-
es that describe business processes at a very high level; make
them what author Alistair Cockburn calls “sea level system scope
use cases.”

If you're using user stories, include a user of the feature in a
concise story statement, such as the one author Mike Cohn cred-
its practitioner Rachel Davies with inventing: As a [type of user] |
want [some particular feature] so that [some benefit is received].
For example: “As a bank customer | want to view my current ac-
count balance so that | know my recent deposit went through.”

The completed model shows us features arranged in the order
they're needed by people and business processes, but this really
only gives us an indication of dependence. As you slice off releas-
es, scan each feature for dependencies that might not be in this

Manage People & Projects

release or a prior one. I've found that if | slice releases horizontal-
ly starting from the top of the model down, | rarely run into de-
pendencies | haven't already resolved in a previous release.

Sometimes folks suggest features that aren't really about users
and the functionality they need. Features like “migrate to an Oracle
database” or “change the look and feel to match our new brand-
ing.” These sorts of features don't work well in this type of model.

When talking about certain features, you might find it's tough
to defer some of them completely. When slicing off a set of fea-
tures to release, discuss how usable that release will be. For each
user of the system ask if she will be able to do her work with this
subset of features. For each important feature left out, is there a
paper process or software workaround that allows her to live
without the feature—no matter how annoying that might be?
Could the feature be split into a crude minimal version for earlier
release and a more elaborate version for later release?

See this issue’s StickyNotes for some reading that will help
ensure a good outcome.

ment he is involved with.

Next, note how frequently you be-
lieve each feature will be used. You can
use simple notation like high, medium, or
low. I use a little more precise continu-
um, writing under the user on the feature
card either hourly, daily, weekly, month-
ly, or quarterly.

Finally, for each feature, note its value
to the purchasers of this system. If your
company has a good understanding of
where ROI comes from on this system,
this may not be too hard—but for the rest
of us, this is usually a subjective judg-
ment. Using high, medium, and low will
work fine for our use today. I'll write the
value under the frequency on each card.

When all of these details have been
added, one of the feature cards might
look like the one in Figure 1.

When trying this at home, make
adding these details a collaborative activ-
ity. Assuming you’ve got your features
written or otherwise printed on cards,
spread those cards out on the table. Take
turns picking up cards and adding user,
frequency, and value. If you’ve got a
good mixed group, you’ll notice that
some folks have strong opinions about
some of these details. Some folks may
know a bit about the user and frequency,

but nothing about value. You’ll find with
a good mixed collaborative group, you’ll
be able to quickly fill in all these details.
You’ll notice lots of good discussion
while doing it.

When writing your features on cards,
the same information should appear in
the same place all the time. This makes
the cards easy to read when placed in the
model. They might start to look like
playing cards in a game. That’s good.
Building the model should feel a bit like
you’re playing a game.

STEP 3: PLACE CARDS IN
SEQUENTIAL ORDER

To build this model, lay a few sheets of
poster paper on a large worktable. This
model is generally wide, so arrange

sheets and tape them together to form a
broad poster.

Draw a horizontal line across the top
of the page and label it usage sequence.

Draw a line on the left side of the
page from top to bottom and label it crit-
icality. Label the top endpoint of this line
always used, the bottom endpoint sel-
dom used. The resulting diagram should
look like the one in Figure 2.

You now need to place features in the
model according to usage sequence and
criticality. By using the features we wrote
out for our retail software earlier, we’ve
already listed them in the order the fea-
tures will be used. PO creation happens
before shipments are received from the
vendor. Tags are created before the items
are put on the shelf and sold. Sales are

Usage Sequence

always
used

Criticality

seldom
used

Figure 2: The model starts with an x and a y axis.

www.stickyminds.com

JANUARY 2005 BETTER SOFTWARE 19

Manage People & Projects

analyzed after some items are sold.
That’s what I mean by usage sequence.

In reality, it may not seem so cut and
dried. If we really look at a retail store,
we might find buyers on the phone plac-
ing orders at the same time receiving
clerks are in the back room receiving and

tagging. If the store’s open, we hope cus-
tomers will be on the retail floor happily
buying our products and customer con-
sultants will be ringing them up. It looks
like all these features are being used si-
multaneously and indeed they are. So
when sequencing them in your model,
arrange them in the order that seems log-
ical when explaining to others the busi-
ness process. If you explain the business
process starting with the selling part,
that’s OK, put that feature first. We want
this model to help us tell stories about
our software, so arrange them in an or-
der that makes it easy to tell stories.
Distribute the cards among partici-
pants. Then have everyone, in as orderly

a manner as possible, place the cards in
your model by usage sequence, with fea-
tures used early on the left and later on
the right. Have them overlap features
that might happen at about the same
point in time. If someone gets confused
about the position of a feature, suggest

that he look at the feature and its imme-
diate neighbors. It’s sometimes easier to
answer the question “does this happen
before that” than to try to take every-
thing into account at once.

If we arranged our feature cards in se-
quence, it might look a bit like the dia-
gram in Figure 3.

STEP 4: GROUP BY
FREQUENCY

For each of these features, how critical to
our business is it that someone actually
uses it? Let’s look at our retail features:
When working with the business people
who know how their business is run,
they inform us that orders often are

Usage Sequence

always
used : A .
create po receive shipment create tags for sell items analyze sales
for vendor from vendor received items (customer consultant) (sales analyst)
(merchandise buyer) (stock receiver) (stock receiver) ban=t monthly
frequency: weekly frequency: daily frequency: daily value: high
> value: medium value: high value: medium return and
) refund items
© (customer consultant)
© frequency: daily
= value: medium
S
(&S]
seldom
used

Figure 3: The features cards are first arranged by sequence.

Usage Sequence

always
used receive shipment sell items
from vendor (customer consultant)
(stock receiver) frequency: hourly
frequency: daily value: high
P value: high
©
2
b=
= create po create tags for return and analyze sales
o for vendor received items refund items e
(merchandise buyer) (stock receiver)) monthly
frequency: weekly frequency: daily frequency: daily value: high
value: medium value: medium value: medium
seldom
used

Figure 4: The sequential feature cards are then staggered according to criticality.

20 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com

placed with vendors informally over the
phone without a purchase order being
created in the system. So in those cases,
we’ll receive the items into inventory
without a PO. This is generally the ex-
ception, but it happens and should be
supported. So our feature “create PO for
vendor” is important to our system and
is used frequently, but not always.

As a group, adjust vertical positioning
of your cards based on how critical they
are to the business process. If the feature
is always done, place it on the top. If the
feature is often —but not always—done,
place it a bit below the top line. If it’s sel-
dom done, place it toward the bottom. If
you’ve got enough people working on
the model simultaneously, this may start
to look like a game of Twister. You’ll ob-
serve people moving cards down only to
see them adjusted back up by someone
else. Use these conflicting card move-
ments to elicit discussions on why some-
one might believe a particular feature is
more critical than another feature.

If we adjust our features for criticality,
our model might look a bit like the one
in Figure 4.

STEP 5: NOTE LOGICAL
BREAKS IN WORKFLOW

If your system is anything like those I’ve
worked on, you’ll have knitted together a
few distinct processes done by different
people at different times. When you look
across your model from left to right, you
might start to see logical breaks in the
workflow. Remember how for each fea-
ture you noted a type of user or role that
primarily used the feature? You’ll find
that these breaks often occur when there’s
a role change. Reading left to right you’ll
see some features are used by one role,
then you’ll see a change to another role
with some features used by this next role.

As a group, discuss where you see
breaks or pauses in the business process.
Then, at each break draw a vertical line,
dividing the model into something that
looks a bit like swim lanes. Label the re-
sulting columns for each process as
shown in Figure 5. If you’re finding it
hard to divide the model in this way, dis-
cuss why. Is there really only one type of
user doing one process? Or, do we have
different user’s features mixed up in the
same timeline?

page 21
full-page ad
SQE

Manage People & Projects

This is all quite interesting so far, but
what are you learning about how to
build releases for your software? Let’s
take a closer look.

STEP 6: MARK THE FIRST
SYSTEM SPAN

Now we’re going to divide the model
into what I call system spans. (The Pop-
pendiecks introduced me to the term
“span” in their book Lean Software De-
velopment.) A system span is a set of fea-
tures that group together logically and
that cut through the business processes
horizontally from start to finish.

The first span should be the smallest
set of features necessary to be minimally
useful in a business context. In our mod-
el, it turns out that the very top row (re-
ceiving and selling items) is the first, most
minimal system span. This will be true of
your model, too. Draw a line under the
top row of your model to indicate the
features that make up this first system
span, as shown in Figure 6.

The first span represents the most
concise set of features that tunnel
through the system’s functionality from
end to end—the bare bones minimum
anyone could legitimately do and still
use the system. This small span should
always be your first release, but it need
not be the first public release of your
software. Getting this part completed
and released, even if only to internal test
environments, forces resolution of both
the functional and technical framework
of your application. Your testers will be
able to see if the application hangs to-
gether coherently. Your architects will
be able to validate the tech-stack func-

tions as expected and may begin work-
ing on load tests to validate scalability.
The team can begin to relax knowing
that from here on in they’re adding
more features to a system that can be re-
leased and likely used.

Notice how in the example we’ve not

Usage Sequence

. . .
' ' '
always , , ,
used ! ! !
|| receive shipment H sell items H
: from vendor : (customer consultant) :
> ' (stock receiver) \| frequency: hourly |}
2 ' frequency: daily ' value: high '
= ! value: high ! !
= ' ' '
k=
= ' ' '
Q create po ' create tags for |: return and 1| analyze sales
for vendor ' received items || refund items || (sales analyst)
(merchandise buyer) | (stock receiver) ' ' monthly
frequency: weekly ! frequency: daily ' frequency: daily ' value: high
seldom value: medium ' value: medium ' value: medium '
' ' '
used i I |

Figure 5: The model is vertically divided into business processes.

Usage Sequence

i i i

' ' '
always . . .
used ! ! !
1| receive shipment ' P '
Il from ven':*lor H o H
: B : (customer consultant) :
> ' f‘s‘“k '“f’z"{l" | frequency: hourly |}
2 ' squency:(dally ' value: high '
h= ' value: high ' '
< ' ' '

[¢] H i ! System Span
= T T T
‘= ' ' '

o create po ' create tags for || return and | analyze sales

for vendor ' received items ||| refund items | (sales analyst)
(merchandise buyer) |, (stock receiver) ' ' monthly
frequency: weekly |1 frequency: daily |1 frequency: daily |1 value: high

seldom value: medium ! value: medium ! value: medium !
used I I I

Figure 6: The first system span represents the smallest set of features necessary to

be minimally useful in a business context.

built any functionality to support the
merchandise buyer or the sales analyst.
Ultimately, we know that supporting
those folks with some functionality is im-
portant. But, because the work they’re
doing doesn’t always happen, we can de-
fer it at least for a little while.

After drawing the line in your model
are there roles and business processes
that are omitted? Talk about them as a

group.

STEP 7: FILL IN BUILD
ESTIMATES

OK, so building a first span is a good
idea, but how long will it take? If you’ve

got developers participating in this exer-
cise, and you should, this is a good time
for them to start giving development es-
timates for each feature. Write the time
estimates in days or weeks directly on
the cards. Very rough estimates will do
fine. Developers may find that seeing

22 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com

the “big picture” helps them estimate a
little better. (See this issue’s StickyNotes
for more guidance on quick estimation
techniques.)

Once you have rough estimates, add
up the estimates for the features above
the line marking the first span. This is
how long it should take to build.

STEP 8: SLICE AND SERVE

The plan may now be “sliced” horizon-
tally into subsequent system spans, or
spanning releases. Well, sort of horizon-
tally. Choose features below the marked
first span that group together logically.
Choose enough features such that the
estimated elapsed development days fit
within an appropriate release date. This
may cause you to draw lines that wan-
der up and down to catch and miss fea-
tures while traversing the model from
left to right. Lines drawn through the
plan make it start to look like a haphaz-
ard layer cake.

At this point in the collaborative ac-
tivity, the business people responsible
for the release should step forward. Let
them use their best judgment to decide
what features best make up a release. If
you’re an observer, ask questions so you
understand why one feature rather than

(Continued on page 40)

page 23
full-page ad
SPI Dynamics

Manage People & Projects

(Continued from page 22)
another finds its way into an earlier re-
lease.

Responsible business people continue
to slice your “cake” into appropriate re-
leases. When choosing features to fill a
release, you may want to consider the
features with the highest value first. You
may also want to consider building up
support for a particular type of user or
business process. In a release, you might
try completing all the valuable features in
one of your business process columns.
This will result in some funny-shaped
lines stretching from left to right.

After slicing the model into releases,
you should be able to see how many re-
leases it will take to build this software
and what might be contained in each
release.

Now, let’s get real. Most software
worth writing has more than six features.
Depending on the granularity of your
features, you’ll likely have dozens. With
a reasonable number of features your
plan will likely look like the photo

h more cc

Figure 7: A real-life model is

processes.

shown in Figure 7. Notice in this model
that software spans several business
processes. Notice how the releases cut
from left to right in some funny jagged
lines that catch the features the planner
intended for each release.

1/3
square
left

Rally

40 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com

P and spans several business

THE RESULTS

Because you’ve arranged features in se-
quential order, you now understand what
features depend on one another. Because
you’ve arranged them by criticality, the
important features are now emphasized
at the top of the plan. Because you’ve di-
vided the features into business process-
es, you have a better idea of the function-
ality that supports each major business
process in your software. You have deter-
mined the minimal feature span that lets
you get your system up and running, end
to end, as soon as possible. All this infor-
mation is provided in one convenient pic-
ture. By employing a little common
sense, we should be able to carve off the
smallest possible releases that will still be
useful to the people who ultimately re-
ceive those releases.

Incremental release may be one of the
more valuable aspects of the various Ag-
ile development methodologies. An early
release can help capture market share,
generate early return on investment, and
reduce money risked on software devel-
opment. A strong early release can in-
crease those benefits immensely. The
model we’ve built can give you a better
picture of your software’s features and
help your organization construct the
most useful and coherent early release
possible. {end}

Jeff Patton leads teams of Agile develop-
ers to build the best software possible.
He proudly works at ThoughtWorks.

