Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Incremental Releases
Users and Stakeholders Will Love

How to deliver functionally complete, valuable,
incremental releases

Jeff Patton
ThoughtWorks
jpatton@thoughtworks.com

Copyright is held by the author/owner(s).
OOPSLA'06, October 22-26, 2006, Portland, Oregon, USA.
2006 ACM 06/0010.

Please join a work group of 4-6 people — thanks.

ThoughtWorks

The art of heavy lifting:

Section 1: Incremental Development, ROI, and Use

1:30 - 3:00
Q The Agile iterative development incremental release lifecycle

O Return on Investment and Rate of Return from Incremental
Release

O User tasks and user stories
O Modeling use with a user task model

O Goals:

o Understand Agile’s incremental release, iterative development
lifecycle

0 Understand the financial and risk reduction benefits of
incremental release

o Understand how the usage of the release is critical to capturing
those benefits

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks:

ne art of heavy lifting*"

Agile Development Follows a
Predictable Lifecycle

“!/

Iteration Plan

<

Feature or Story
» Expressed from business or user perspective
* Business value
« Estimable
Feature List: prioritized features
(AKA Product Backlog)

Iteration
* 1-4 week timebox

Incremental Release

* 1-6 lterations

« Released internally or
externally to end users

Product/Project

—

Product/Project Chater)

RS

Product or Project
« Perpetually released

Thought\Vorks:

Planning & Design Must Gain
In Precision & Detail Over Time

time

’Project Charter)| Release Plan Iteration Plan) Feature Design FEEUIRD
\ ' Development

< k) detail >

course fine

grain grain
Determine how the

software will earn money, Decide how the feature
and the user constituents looks and behaves
will be served

v

Determine the features in
the iteration and how they
coherently hang together

Determine appropriate product
features and the specific features
in this release

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Testing & Evaluation Afford Course
Changes

time

e
’Project Charter)| Release Plan) Iteration Plan) Feature Design FEEUIR
Development
« | detail | b
course fine
grain grain
Product Release Iteration Feat Test
Evaluation Evaluation Evaluation EElE IES
AN

Test that the features look
and perform as expected

Evaluate how features work
Evaluate the finished together. Add, remove, or
rel . Will it be useful change features in the
Evaluate the product for its target audience? release
direction as a whole. How Will it earn the revenue
can the product earn more expected?.
revenue?

Thought\Vorks:

Testing & Evaluation Afford
Course Changes

tién e e
’Project Charter) Release Plan Iteration Plan)|Feature Design IS
Development
< detail P
course fine
grain grain

Product] '/] lenrnti '/_ !

Evaluation

Each Cycle End A',',O_WS_“ -
Evaluation & Change totthe:v]
*Product We're Building .-

Evaluate the product . .
grecionas awnole. o e Process We're Following
can the product earn mo

revenue?

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Incremental Release Increases Return on
Investment

O Software begins to earn its return after delivery and while in use
O The sooner the software begins earning money:

0 the sooner it can recoup its development costs,

o and the higher the overall rate of return

O Increasing release frequency adds costs that must be taken into
account

o additional testing costs

0 promotion costs

o delivery costs

o potential disruption to customers
O The impact on ROI for early release can be dramatic
Q The impact on cash flow even more dramatic

ThoughtWorks:

ne art of heavy lifting™

Evaluating Return on 4 Release Strategies
for the Same Product Features

O All features delivered and in

use earn $300K monthly Return On Investment
0 About half the features
account for $200K of this 6,000

monthly return
5,000 1
Q Features begin earning money

1 month after release 4,000

Q Each month of development
costs $100K

Q Each release costs $100K

3,000

2,000

Thousands of $s

1,000

Single Release - T A T T
12 months 14 10 1316 19 22

total cost: $1.3 M (1,000 7

total 2 year return: $3.6 M

net 2 year return: $2.3 M

Cash Investment: $1.3 M

Internal Rate of Return: 9.1%

(2,000)

Month

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Evaluating Return on 4 Release Strategies
for the Same Product Features

O All features delivered and in

use earn $300K monthly Return On Investment
o About half the features
account for $200K of this 6,000
monthly return
. . 5,000 -
O Features begin earning money
1 month after release 4,000 -
Q Each month of development & 3000 1
costs $100K K
T 2000 4
QO Each release costs $100K H
2 1,000
. —
Semi Annual Release - a0
6 months increment 1 4 10 1316 19 2
total cost: $1.4 M (1,000)
total 2 year return: $4.8 M (2.000)

net 2 year return: $3.4 M
Cash Investment: $.7 M
Internal Rate of Return: 15.7%

Month

ThoughtWorks:

ne art of heavy lifting™

Evaluating Return on 4 Release Strategies
for the Same Product Features

O All features delivered and in

use earn $300K monthly Return On Investment
o About half the features
account for $200K of this 6,000
monthly return
] . 5,000
Q Features begin earning money
1 month after release 4,000 -
Q Each month of development 3,000 1
costs $100K
2,000

Q Each release costs $100K

Thousands of $s

1,000

Quarterly Release - R = i e
3 months increment 1 4\3@_/13 16 19 22
total cost: $1.6 M (1,000)
total 2 year return: $5.3 M
net 2 year return: $3.7 M
Cash Investment: $.44 M
Internal Rate of Return: 19.1%

(2,000)
Month

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Evaluating Return on 4 Release Strategies
for the Same Product Features

O All features delivered and in

use earn $300K monthly Return On Investment
o0 About half the features
account for $200K of this 6,000
monthly return
5,000
O Features begin earning money
1 month after release 4,000
d Each month of development 23,000
costs $100K s
2 2000
QO Each release costs $100K a
21,000 -
I
Quarterly Release —dropthe |~ | . | i Ao
last release 17 10 1316 19 2
3 months increment (1,000)
total cost: $1.2 M
total 2 year return: $4.9 M (2,000
net 2 year return: $3.7 M Month
Cash Investment: $.44 M
Internal Rate of Return: 20.4% 1

ThoughtWorks

The art of heavy lifting

Continuing To Add Features
May Not Pay The Same Level Of Return

Q Continue development for one

additional quarter Return On Investment
QO Additional high value features 6,000
add $100K monthly increase '
to return 5,000
4,000
3,000
2,000 1

Thousands of $s

1,000 /
Quarterly Release — continue B Iy A A—
with 5t release 1 4\4‘6_/13 % 19 22

\
L

3 months increment (1,000)
total cost: $2 M
total 2 year return: $6.2 M (2,000)

Month

net 2 year return: $4.24 M
Cash Investment: $.44 M
Internal Rate of Return: 19.0% 12

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Software By Numbers & Project
Portfolios

Q Software by Numbers [Denne & Cleland-Huang]
describes Incremental Funding Methodology [IFM]

0 Goal to reduce necessary cash outlay
0 Make projects self-funding
o Increase return on investment
d SBN Tools:
0 http://dactyl.cti.depaul.edu/ifm/default.htm

O SBN introduces the concept of Minimal Marketable
Feature — MMF - the smallest sized feature that
would have marketable value

O SBN simple financial models provide guidance on
evaluating multiple projects in a portfolio

ThoughtWorks

The art of heavy lifting:

Building & Evaluating Complete
Releases Helps Reduce Risk

Q Prove general architectural approach
Q Validate domain model

Q Perform user acceptance testing

0 Showing users complete workflow lets them effectively evaluate
and give feedback

O Test for performance
Q Test for load

O Deploy in target environment

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

To Capture Return On Investment,
the Delivered Product Must Be Used

QA To plan an incremental release we must consider:
o Users
o User goals
o User’s current work practice, including current tools and processes

o Work practice after each product release

ThoughtWorks

The art of heavy lifting

Today’s Business Problem
Barney’s Media

O As you review this problem

o Think about business goals for building this software

= Where will the organization earn money from building this
software?

= How will they measure return?
.

W === o Identify Users & Goals
o :‘f\kf |

- = Who will use this software in
Sy pursuit of what goal?

= Don't forget the business

Gan e s people who've paid for the
15 oan software — how and why might
f they use it?

h Activity: everyone read the business problem.
Take a few minutes to discuss the problem as
a team. Did you learn anything from the
discussion you hadn't thought about when
reading the problem? 16

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

Thought\Works:
Software Is A Tool People Use To Help Meet
Goals, Tasks are the Actions They Perform

a Goal:

o Reach the end of my life with my own teeth
still in my head.

O Tasks:

o Clean teeth

o Visit a dentist
Q Tools:

o Toothbrush

o Toothpaste

o Running water

o Floss

o Dentist

O Understand goals, then tasks before
identifying tools.

O Validate tools by performing tasks and
confirming goals are met.

QO Defer detailed too/ design decisions by
identifying and planning for task support.

Thought\orks
User Interface Designers Often Use the Tasks
& Activities to Describe What People Do

Qd Tasks have an objective that can be completed.
QO Tasks decompose into smaller tasks.

QO Activities are used to describe a continuous goal, one that might use
many tasks, but may never really be completed.

d “Read an email message” is a task, “Managing email” is an activity.

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &

Stakeholders Will Love

Tasks Have A Goal Level

ThoughtWorks

The art of heavy lifting™

Plan releases
using tasks at sea
level and a bit
below

very high ievei ongoing goais that

(""I\ Cioud or high summary ievei:

A A seaor function level: taske I'd rezsonably expect to complete in

_AA single sitting.

Fish or sub-function: smaller tasks that by themselves may not

6 Clam or low sub-function level: small details that make up a sub

A Good User Story Models the Use of the System

ThoughtWorks

The art of heavy lifting*

Q Originally eXtreme Programming described a user story as a small amount

of text written on an index card to function as a reminder for a conversation

between developer and customer

O From Wikipedia:

“A user story is a software system requirement formulated as one or two
sentences in the everyday language of the user.”

Q The user story form credited to Rachel Davies in Cohn’s User Stories
Applied combines user, task, and goal:
As a [type of user]
I want to [perform some task]
so that I can [achieve some goal]

As a harried shopper
I wantto locate a CD in the store

so that I can purchase it quickly, leave, and continue
with my day.

20

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

10

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Build Release Plans Using User
Tasks to Defer Feature Design

QO Understand goals then user tasks before identifying tools to support
them.

Q Validate tools by performing tasks and confirming goals are met.

Q Defer detailed foo/ design decisions by identifying and planning for
task support.

QA The idea of "latest responsible moment" comes from Lean Software
Development.

0 Put off decisions as long as you can: to the latest responsible moment.

0 But it's the latest responsible moment, not the "/ast possible' moment.
That wouldn't be responsible.

21

ThoughtWorks

The art of heavy lifting:

A Task Workflow Model Organizes
Tasks to Represent Workflow

Q To build a simple task workflow model:
o Draw a left to right axis representing time, a top to bottom axis labeled necessity

o Identify high level activities performed by users of the system and place them
above the time axis in the order that seams reasonable

o Within each activity, organize tasks in the order they’re most likely completed

0 Move tasks up and down depending on how likely they are to be performed in a
typical instance of use

Activity 1
‘ time | >
% Task 1 Task 2 Task 3 Task 4 Task 5
2
Task 6 Task 7
22

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

11

Incremental Releases Users &
Stakeholders Will Love

ThoughtWor

Tne art of heavy

Exercise: Build a Simple Task Model

Activity: using the pre-printed
activity and task cards, build
a simple task workflow
model for Barney’s

Activity 1
r%’ Task 1 Task 2 Task 3 Task 4 Task 5
; Task 6 Task 7
ThoughtWorks:
Incremental
Releases
Users and
Stakeholders
Will Love

How to deliver functionally
complete valuable incremental
releases

Please return from our break
on time at 3:30

Jeff Patton
ThoughtWorks
jpatton@thoughtworks.com

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks:
Section 2: Thinning Feature Scale, Incrementa
Release Planning, Iterative Release Construction

3:30 - 5:00

O Understanding tasks, features, and feature scale

d Thinning a release while retaining business value

O Leveraging the task model for incremental release planning

O Managing the incremental design and development of a product
release

O Successfully using user stories in incremental development

O Differentiating between project and product success

25

ThoughtWorks

The art of heavy lifting™

Considering Feature Scale

Given a task like “swing from tree,” a variety of feature design solutions exist
to support the task which vary widely in scale

Managing scale appropriately is an important part of managing scope

When initially planning the delivery of a set of features, the scale of each
feature must be considered

Much of detail scale management happens during design and development

0O 00 O

0 Close to the time the functionality is needed

o In the context of other features, time constraints,
development capacity, and other projects in the portfolio

low cost moderate cost high cost “

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

13

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks:

ne art of heavy lifting*"

The Car Metaphor

QO Consider the job of building a car incrementally.

O Omitting necessary features may make the product useless — this
makes prioritization difficult

Q Scaling all features to highest level increases cost

a To control the cost of the car, we scale the features back to
economical levels

Feature List
Engine
Transmission
Tires
Suspension e
Breaks AN
Steering wheel | {] A .
Driver's seat @ \/
2 TOYOTA Mercedes-Benz
27

ThoughtWorks

The art of heavy lifting

The Characteristics of a Feature
Used For Managing Scale

O Necessity: what minimal characteristics are necessary for this feature?

o For our car a minimal engine and transmission are necessary — along with a
number of other features.

Q Flexibility: what would make this feature more useful in more situations?

o For our car, optional all-wheel-drive would make it more useful for me to take
on camping trips. A hatchback might make it easier for me to load bigger stuff
into the back.

O Safety: what would make this feature safer for me to use?

o For our car adding seat belts and making the brakes anti-locking would make
the car safer.

O Comfort, Luxury, and Performance: what would make this feature
more desirable to use?

o I'd really like automatic climate control, the seats to be leather, and a bigger V6
engine.

28

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

14

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

When Planning a Software Release, Thin
Software Features Using the Same Guidelines

O When planning a software release, start with tasks that users will
perform

Q Add in flexibility as necessary
O Add in safety as necessary

Q Add in comfort, luxury, and performance as it benefits return on
software investment

29

ThoughtWorks

The art of heavy lifting*

Necessity:
support the tasks the users must perform to be successful

O If software doesn'’t support necessary tasks, it simply can’t be used

O A feature or set of features that minimally support each required
task meets necessity guidelines

While planning a software release, features to support some tasks
may not be necessary if the user can easily use a tool they

already have or some other manual process to work around the
absence of the feature in your software.

30

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Flexibility:
support alternative ways of completing tasks or tasks that are
less frequently performed

QO Adding flexibility to a system adds alternative ways of performing
tasks or support for less frequently performed tasks

QO Sophisticated users can leverage, and often demand more flexibility

O Complex business processes often demand more flexibility

To estimate the level of flexibility needed, look to the
sophistication of the users using the software and to the
complexity of the work being performed. Expert users
appreciate more flexibility. Complex business processes require
more flexibility.

31

ThoughtWorks:

ne art of heavy lifting™

Safety:
help users perform their work without errors and protect the
interests of the business paying for the system

O Adding safety to a system protects the users from making mistakes
with features such as data validation, or process visibility

O Safety characteristics of a feature often protect the interest of the
business paying for the software by implementing business rules

O Sophisticated users can work without safety features, while novices
often need them

O Complex business rules often demand more safety features

To estimate the level of safety needed consider the expertise of the
users of the system and the number of rules the business would
like to see enforced. Novice users may need more safety

features. Complex business processes may require more safety
rules..

32

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

orks:

ne art of heavy lifting*"

ThoughtW

Comfort, Performance, and Luxury:
allow users to do their work more easily, complete their work
faster, and enjoy their work more

O Adding comfort, performance, and luxury features allows your users to:
o complete their work more easily
o complete their work more quickly
o enjoy their work more

O Often the return on software investment can be increased by adding these types of
users

a Comfort features benefit frequent, long term use of the software
O Sophisticated users can benefit from performance features
a Those making buying decisions often look at luxury features

To estimate the amount of comfort, performance, and luxury necessary consider
the affects of these features on the sales, adoption, and use of the software.
Look more closely at the financial drivers when estimating.

Opportunities for increasing return on investment drive additions to

comfort, performance, and luxury features.

33

ThoughtWorks:

ne art of heavy lifting™

Using Our Task Model to Identify Features
that Span Our Business Process

O The Task Model we've built identifies the major activities and tasks
that span the business functionality

O A successful software release must support all necessary activities in
the business process

O This type of task model is referred to as a Span Plan since it helps
identify the spans of functionality

smallest list of tasks

o to support users =
Activity 1 smallest span
! time >
% Task 1 Task 2 Task 3 Task 4 Task 5
3
2
Task 6 Task 7
34

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

Identify Releases In a Span Plan By
Slicing Horizontally

ThoughtWorks

Tne art of heavy lifting?

activity 1 activity 2

activity 3

activity 4

nece&sary \-}

less
optional

optionality

more
optional

QO Choose coherent groups of features that consider the span of business
functionality and user activities.

O Support all necessary activities with the first release
O Improve activity support with subsequent releases

35

Thoug

htiorks:

The art o

f heav)

Sliced Span Plans

QO Slices often take irregular shapes to ensure coherent groups of product
features

36

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

18

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Use Feature Thinning Guidelines to
Reduce the Size of a Release

O The topmost row of the span could be the first, smallest release

a By minimizing a release we can realize financial and risk reduction
benefits earlier

Qa The top span represents the minimal tasks users need to accomplish
to reach their goals. How can we split these “high level stories” into
smallest parts?

o Can the feature(s) to support a task have reduced safety?

o Can the feature(s) to reduce a task have less comfort, performance,
and luxury?

o Are there optional tasks that can be supported in a subsequent release?

o0 For necessary tasks, look at the steps — or subtasks that make up the
task. Can any of those steps be made optional?

0 Move cards around the model, or split cards into multiple cards to defer
task support, or specific feature characteristics till later releases

37

ThoughtWorks

The art of heavy lifting*

Splitting Span Plan Tasks

activity 1 activity 2 |activity 3 activity 4
 time | >
ecepsary - |] [[0 O [
less |4 |1] [N N) R (O
optional | . | [1
5||=mEs EEe 1
2| EmEmE = .
more E E E
optional |:|

Q Consider tasks more optional

Q Split tasks into optional parts

38

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Use Span Planning & Feature Thinning
Guidelines to Yield Small Coherent Releases

Activity:

Q Thin your span plan using
feature thinning guidelines

QO Identify 3 candidate
releases for Barney’s

Q As a group discuss what
sorts of features might
support each task, and if
and how they could be
thinned

Q Thin support for tasks using the following guidelines:
0 Necessity: is supporting this task necessary in this release?
o Flexibility: does supporting this task add flexible alternative ways of doing things?

o Safety: does supporting this feature add safety for the user or business paying for
the software?

o Comfort, Performance, and Luxury: does supporting these tasks make the software
easier to use, faster to use, more enjoyable to use?

39

ThoughtWorks:

1e art of heavy lifting™

Building Features Incrementally
Takes On Unnecessary Risk

QO The software can't be validated fully
until all or almost all features are built

Q Errors in estimation put features built
at the end of the release design and
development cycle at risk

a Incrementally adding features often
results in hard tradeoffs near the end
of development time

o Disproportionately reducing the scale
of features left to build

o Removing features from scope

40

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting™

Building Features Incrementally
Takes On Unnecessary Risk

Q The software can't be validated fully
until all or almost all features are built

Q Errors in estimation put features built
at the end of the release design and
development cycle at risk

Q Incrementally adding features often
results in hard tradeoffs near the end
of development time

o Disproportionately reducing the scale
of features left to build

o Removing features from scope

41

ThoughtWorks

The art of heavy lifting*

The Closer We Get To Implementing
Features, The More We Know

Q Barry Boehm first described the cone of uncertainty applying it to
estimation accuracy over time

Q Steve McConnell applied the same principle to certainty of product
requirements

O Defer specific feature decisions to the “latest responsible moment” as
described in Poppendiek & Poppendiek’s Lean Software Development

>
=
=
©
e
@
&)
c
|

uncertainty decreases over time
 time | B

cone of uncertainty source: Barry Boehm (estimation), elaborated by Steve McConnell (requirements) -

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

21

Incremental Releases Users &

Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Divide Release Design &
Development Into “"Trimesters”

O Build a simple system span of necessary features first

O Add flexibility and safety next

Q Finish with comfort, performance, and luxury

O Reserve time in the remaining third for unforeseen additions and

adaptations
ﬂ additions and

adaptations

inty decreases over liifie
time L

cone of uncertainty source: Barry Boehm (estimation), elaborated by Steve McConnell (requirements) 5
4

ThoughtWorks

The art of heavy lifting*

This Product Thickening Strategy
Slowly Brings The Product Into Focus

O Just as an artist envisions an entire painting by starting with a
sketch or an under-painting and slowly building up detail, apply the
same strategy to “thicken” the product from simple necessities
through to full featured product.

44

Jeff Patton, ThoughtW
jpatton@thoughtworks

orks,
.com

22

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks

The art of heavy lifting:

Agile Development’s User Stories
Are as Big As You Want Them To Be

a Extreme Programming’s original story definition asked that stories
be completed by a team in 1-3 weeks

Q Scrum Story sizes may vary depending on the timeframe and
context

o Project Backlog is not the same as Sprint backlog — sprint backlog items
are smaller tasks

o0 Project Backlog items are split into smaller sizes as they move toward
the top of the backlog

Q Current Extreme Programming and Agile thinking continues to push
user stories to be smaller

o 1-3 days for a single developer to implement

O Allow your stories to have a life and lifecycle of their own before
eventually arriving into an iteration for development

45

ThoughtWorks

The art of heavy lifting:

Plan With Task-Centric User Stories, Iteratively
Build With Thinned Feature-Centric User Stories

O Consider the concept of high level stories that may never be done —
but rather just done enough to meet the goals of this release

o Iteration level feature-centric user stories for the same user task may
reoccur in multiple releases

@ When user tasks form the foundation of user stories, the quality of
user experience for that task can always be improved

QO Take advantage of iteration level validation and planning periods to:
o Evaluate the product as it's taking shape
o Write iteration level feature-centric user stories

0 Use a task-centric span plan to manage the product features developed
as they relate to activities and tasks supported by the product release

46

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

Incremental Releases Users &
Stakeholders Will Love

ThoughtWorks:

ne art of heavy lifting™

Project Success is Not Product
Success

Q Placing focus on finishing all scope on time and in budget may
equate to project success

Q Finishing all intended scope on time, and under budget does not
guarantee product use or quality of use

QO Focus on effective support of user tasks

(W]

Focus on achieving stakeholder and user goals

O Focus on getting product into use to begin earning revenue for
its business stakeholders

47

ThoughtWorks:

ne art of heavy lifting™

Incremental Releases
Users and Stakeholders Will Love

How to deliver functionally complete valuable
incremental releases

Jeff Patton, ThoughtWorks,
jpatton@thoughtworks.com

24

