Kicking Off the Slow
Software Movement

by Jeff Patton

Over breakfast, an old friend who hap-
pens to run a software development
company was complaining that too many
of his people focus on software develop-
ment—engineering, requirements, and
project management stuff. When con-
fronted with a problem, they jump in and
start gathering requirements, putting to-
gether project plans, and developing.

What is now a problem used to be
cause for celebration.

He went on to explain that his staff
members don’t take enough time to un-
derstand and appreciate the problems
they’re trying to solve. They are quick to
launch into a project, but the result—no
matter how quickly or effectively it was
built—just isn’t right.

My friend wants people to better un-
derstand what success means before
starting to build. He said, only half jok-
ing, “I want to start the Slow Software
movement!” He was alluding to the Slow
Food movement—a non-profit interna-
tional group trying to bring diversity and
quality back into the food we eat (see the
StickyNotes for a link). His comments
made sense to me and set me to wonder-
ing why we’re in such a hurry.

Years ago it was incredible that we
could build software at all. We were con-
strained by the tools we used—both the
development languages and the comput-
er systems. Clever people worked within
these constraints to create software ap-
plications that allowed users to perform
tasks that were nearly impossible before.

But constraints are changing. Com-
puters are now commonplace and every
place. Our mobile phones have more
power than computers that once filled
entire rooms. There is a variety of pro-
gramming languages that leverage
libraries of code to solve problems so we
don’t have to solve them any more.

As technical constraints lift, comput-
ers and software have become
ubiquitous. Computers—once only oper-
ated by scientists—are now in my

daughter’s kindergarten class-
room. With the proliferation of
software-based tools has come
the expectation from users that
these tools will be as good, as
useful, and as valuable as other
tools, like kitchen appliances or
tools in their garages.

In his book The Inmates Are
Running the Asylum, Alan
Cooper refers to most software as “danc-
ing bear-ware.” It’s not that the bear is a
good dancer; we’re just amazed that the
bear dances at all. Things have changed
since 1999 when Cooper wrote that.
These days not only are we surrounded
by dancing bears, but some of them are
getting pretty good. We no longer consid-
er acceptable the lumbering shuffle
achieved by some software—we expect a
tango.

In response, I've observed over the past
dozen or so years a drift in the way we
think about, design, and build software.
While in the past there was more emphasis
on engineering discipline and process, now
they’re not sufficient. When we sit down
to use software today, we’re not impressed
by the engineering discipline that went
into it, we don’t ponder the process used
to build it, and we don’t wonder whether
the product delivered on time with its in-
tended scope. We’re no longer amazed
that we have software to use. We now ex-
pect software to work well. We expect that
the value we get from using it is worth the
price we pay for it.

Our development approaches have
changed, too. Popular processes now
place emphasis on delivering business
value, not lines of code. The quality of
software is increasingly judged not by its
lack of bugs but by its usability. Writing
high-quality, bug-free code no longer
seems to be a measure of success. Deliver-
ing on time now seems less important
than delivering value.

If value realized and quality of use re-
ally are our new measures of success,

www.StickyMinds.com AUGUST 2007

Technically Speaking

maybe it is time to slow down.

Before we plan and build, we should
take time to understand what value is.
Make sure the first thing we gather is
how the people paying for the software
will get value from it. That’s likely not a
list of features but rather a list of goals or
a description of a world that’s a little bet-
ter because of this software. Then we will
decide what to build based on what best
meets those goals.

We also might want to understand
better the people using our software.
They’ve got goals, too, which likely are
met using other software or manual
processes today. What we decide to build
should outperform what users already
have. The quality of what we build will
be judged alongside the other tools on
which users currently rely.

Gathering business goals, talking to
and observing people, and validating soft-
ware with usability testing likely will slow
us down. But maybe it wasn’t really “fast”
that we wanted in the first place. {end}

Jeff Patton leads teams of agile develop-
ers to build the best software possible. He
proudly works at ThoughtWorks. Jeff’s
series of columns on software design and
pre-design tips appears regularly on
StickyMinds.com.

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

m Slow Food movement

BETTER SOFTWARE 7



