
Collaboration is hard. Two people from
different disciplines will often find history
getting in the way. Their two disciplines
coalesced from different experiences, drew
different lessons, emphasized different 
values, and focused on different goals. All
those things hamper coordinated work.

The two of us recently had a Eureka!
moment after Jeff realized how a bridge
could be built between two disciplinary
worlds. This article isn’t about the particu-
lars of that bridge (but you can find out
about it in the StickyNotes). Rather, it’s
about what factors led to the creative
moment. Although this is a story about
two consultants at a meeting in the
mountains, we believe you can take 
advantage of the same factors in your
workplace. We emphasize the factors by
putting them in bold font and italics.

The Characters
Both of us have common software 

development preferences. Rather than
planning carefully for the future, we 
prefer to remain nimble enough to be 
unfazed when the future brings surprising
change. We believe that most businesses
can’t know what they’ll need in a year,
and we know we can’t predict what we
can deliver in a year, so we arrange to
give the business a working piece of the
product every few weeks. We don’t know
anyone who is very good at writing or
reading precise, unambiguous, clear, and
complete documents, so we try to get
everyone together in the same room so
that no one has to. Unsurprisingly, we’re
advocates of the Agile methods.

We also have a discipline in common.
We’re both competent programmers, and
we’re abreast of what’s new in that field. 

Nevertheless, our primary disciplines
differ. Jeff is mainly known for User 
Experience (UX) design, the craft of
shaping a product according to users’
goals, contexts, tasks, and quirks. Brian
is mainly known for software testing. 

Agile projects? They seem to be needed. At
the end of six months, delivering new 
features every few weeks, it’s too easy to
end up with a pile of features that don't
hang together in any useful way. And yet
the usual UX solution would break the
rhythm of the project. That solution has
the UX designers disappear from sight of
the project proper, collect a great deal of
data on the users, iterate through many
ideas, and then deliver a large document
describing in detail a tailored interaction
design. (See the StickyNotes for more on
interaction design.) Jeff came to the
workshop wanting to hone his ideas on
how UX designers can work with the
project, throughout the project, helping a
good interaction design emerge in the
same way that Agile projects work and
rework the internal code design.

The heart of our days involved
demonstrations of sequences of well-
understood techniques. Jeff had groups
of users walk through the creation of
user goals and metrics, sketchy user
profiles, and a rough task model used

The Setting
At the point our story starts, we were

isolated from normal work in the Canadian
Rockies, leading a Canadian Agile Network
workshop devoted to the question of
what could emerge if two disciplines
were bashed together.

We faced some tight deadlines.
We both were in the unusual (honest!)
position of being fairly unprepared for
the workshop. So we spent the afternoon
and evening before the first day—and
scattered hours throughout the workshop—
obsessing over what should be delivered
and how best to deliver it. That resulted in
high energy focused on the topic: We
didn’t have time to be distracted by 
email, a good night’s sleep, and like 
irrelevancies. The energy and deadline
pressure continued past the workshop, as
we’d promised to report on our discussions
at a user group meeting the next evening.

The Plot 
The story opens with an obsession of

Jeff’s: How should UX people fit into 

From the Front Line

Bridging the Gap 
Between Disciplines
by Jeff Patton and Brian Marick

12 BETTER SOFTWARE JULY/AUGUST 2005 www.StickyMinds.com

G
ET

TY
 IM

A
G

ES



From the Front Line

www.StickyMinds.com JULY/AUGUST 2005 BETTER SOFTWARE 13

for release planning. (See his article in the
January 2004 issue of Better Software for
more information.) Brian gave a detailed
demonstration of a technique he learned
from Rob Mee. In it, tests written in
business language are implemented in the
Fit testing tool, the tests are made to pass
one bit at a time (as with conventional
test-driven design, just at a “higher” level),
and business objects are extracted from
the resulting test-support code. In
essence, the tests drive the large-scale
structure of the application. (See the
StickyNotes for more on test-driven design
and Fit.)

Watching this, Jeff saw three conceptual
strands making a possible bridge between
business-facing test-driven design and
UX design:

1. The terminology strand links what
UX people point to when they say
“interaction context” to what a 
programmer points to when she says
“the Presenter object in the Model-
View-Presenter design pattern.”

2. The artifact strand links the script
a UX designer might use to explain
workflow and navigation to the
test a Fit-first programmer would
use to create program objects
(specifically, Presenter objects).
They could in fact be the same
chunk of words. 

3. The activity strand lets the UX 
designer who has created an interac-
tion context walk over to a program-
mer, show an executable example
(test) or two, show a sketch of 
visual experience, have a little 
conversation, and get the programmer
well started. Suddenly, the UX de-
signer is part of the normal rhythm
and smooth pace of an Agile project.

Jeff got there by putting terminology
in the background. Consider: If you ask
a UX designer what an “interaction
context” is, her definition will be in
terms of words interesting to UX 
designers. Perhaps she’ll say, “An 
interaction context is a ‘place’ in the
software where similar user roles 
perform similar tasks at similar times.”
Such a definition would be more likely
to prompt you to ask questions about
“user roles” and “tasks” than questions

■ Gather together people from 
different disciplines—people who
nevertheless have enough in 
common that they are both willing
and able to understand each other. 

■ Make sure that the people have 
obsessed over the problem long
enough that their brains are primed
to make use of any stray fact.

■ Put them somewhere without 
distraction. Give them enough time
to think—but not so much time
that they lose urgency.

■ Have them show each other what
they do. Ask them to seize on specific
similarities in actions, artifacts, and
definitions—and then to explore
them deeply. 

■ When they have some piece of a 
solution, they should put it through
its paces. If it survives, bring it
home to try out in a real project (as
Jeff will be doing). {end}

Jeff Patton leads teams of Agile developers
to build the best software possible. He
proudly works at ThoughtWorks. Jeff's
series of columns on software design and
pre-design tips appears each quarter on
the StickyMinds.com homepage.

Brian Marick has worked in testing since
1981. He concentrates on developer testing,
the interface between developers and 
independent testers, the criteria for objective
test evaluation, and helping teams and
projects understand and manage the
tradeoffs inherent in software assurance.
Brian founded Testing Foundations:
Consulting in Software Testing in 1992.
He is the author of The Craft of Software
Testing (1995) and is a technical editor
for Better Software magazine. Contact
Brian at marick@testing.com.

such as, “What’s the closest thing to an 
interaction context in my world?” (After
all, the UX designer isn’t in your world.)
So your questions will lead you to 
understand the self-contained definitional
world of UX designers. It helps you
know where to build a bridge to—but
not how to build it. 

For Jeff, the idea about how to build
it came from watching Brian perform
specific detailed actions with a specific
artifact. That kind of observation 
encourages learning by analogy: “What
in my world looks like that test script?”
and “If I were working through that list,
step by step, what would I hope to 
accomplish?” Those analogies build the
bridge: “I’d work through a list like that
to understand or explain an interaction
context, while he’d use it to understand
and create an object. What kind of object
would match an interaction context? A
Presenter . . . So how could an interaction
designer write a script like that to force a
programmer to create a Presenter?” From
such observations flow questions that
draw out the representative from the other
world: “This is what I think I saw . . . does
that sound reasonable to you?” And so
the bridge is built—or at least sketched. 

A sketch has to be tested. We spent
the first part of that evening taking up
space at the Saigon Y2K restaurant in
Calgary. We worked through a simplified
example of user experience design for a
nagging problem Brian’s wife has at
work. After they kicked us out of the
restaurant, we went back to the hotel
and worked on writing a script/test and
coding from it until they ejected us from
the hotel restaurant. Working through a
realistic example helped us refine the 
insight. We actually worked through it
three times, once in private and twice
more the next day in two talks. Each
time, we learned more about the idea.

What Can You Do?
The word “Eureka!” is in the English

language because good ideas often 
come as a surprise. But they don’t come
from nowhere. They depend on people,
setting, and action. Although what we
did is surely not the only way to surprise
yourself, consider trying the following
when you have a knotty problem:

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

■ The Eureka! idea explained
■ Places to learn about 

interaction design
■ Places to learn about 

test-driven design
■ Further reading on Fit


