
Unfixing the Fixed Scope Project: Using Agile
Methodologies to Create Flexibility in Project Scope

Jeff Patton
Development Team Lead

Tomax Corporation
224 South 200 West
Salt Lake City, UT

Jpatton@tomax.com

Abstract
Although it seems to be common knowledge that it’s
impossible to succeed in a project with fixed time, quality
and scope, we often continue to try anyway. This
experience report discusses our successful failure at running
fixed time and scope projects. I say successful failure
because we actually failed to fix scope but arrived at an
acceptable way to vary scope and deliver on time in an
environment not normally amenable to variable scope. This
paper discusses the methods used and makes
recommendations on how you might unfix scope in your
development environment.

Keywords
Interaction Design, Agile Methodologies, Extreme
Programming, Usage-Centered Design, Scope
Management, Project Planning

1. The Failure Mode

1.1 The Scene Opens

My employer, Tomax Corporation, specializes in software
for medium sized chain retailers - those with 100 to 1000
physical locations. In theory our company sells shrink-
wrap software. The software automates processes from
point-of-sale to item maintenance, merchandising,
purchasing, receiving and integration with other financial
systems. After being sold, the software need only be
installed and configured to work in a specific customer’s
environment. However, most companies who invest in our
product would like some part of the product altered or
extended to better suit their specific business needs. So, it’s
generally the case that before the software can be installed
and made live in the new customers’ company, a
development project to complete and integrate these
changes must take place. This is where the fun starts.

1.2 Tension Builds

Customers who purchase our software generally have the
goal to reduce costs by automating processes that were
manual in the past. They may want to replace obsolete
systems that, while once adequate, have not changed to
meet their current business needs. Whatever the
motivation, analysts within our customer’s company
carefully select new features for Tomax to build that will
earn them their desired return on investment. Their feature
selections along with expected delivery and installation
dates for those features are represented in an ROI analysis.
Omitting any of these features, or failing to deliver them on
their projected date will call into question this ROI analysis
and the profitability of the entire project.

Installing new software requires a major investment the
least part of which is the actual purchase price of the
software. Companies implementing our software require
significant staff to plan and execute the installation,
training, process change management, pilot and eventual
rollout of the software over hundreds of far flung physical
locations. It’s safe to say that the resources needed to
accomplish those activities exceed the resources Tomax
may have dedicated to building the new features requested
prior to software installation and rollout.

The seasonal cycles of retail result in times of the year
where business is slow and times where business is brisk
such as the fall and winter holiday season. During these
brisk times, introducing change within a retail organization
carries particularly high risk. Consequently, pilot and
rollout of new software must take place during the slower
times of year.

Plans are drawn up with fixed dates for feature delivery,
acceptance testing, pilot and rollout. Dates are driven by
the seasonal nature of retail and the over-arching corporate
goals for change on or before a given date. Massive

resources are hired or relocated within the company to be in
position as dates on the project plan come up. So important
are these dates that payment to Tomax is bound to them.
Missing the dates may result in our company paying
financial penalties to our customer. It’s possible that if
dates are missed our customer’s losses may be so great that
suing Tomax for damages is not out of the question.

1.3 We’ve Made Our Bed

New features have been identified. Development due dates
have been fixed based on best guesses for development
time for those new features. Detail design begins for these
features. Sign-off on this design is important. Should the
feature be implemented incorrectly, dates may be at risk
and the entire project may be delayed.

We’ve fixed the timeline for the project.

We’ve fixed the scope for the project.

The timeline is generally short enough that hiring and
training new resources is generally not beneficial.

Quality must be solid since the software we’re building is
generally mission-critical for our customer.

1.4 Predictably Unpredictable

As the project begins we can depend on surprises starting to
emerge.

The detail designs Tomax put together seem to have large
omissions in them. Often, some details were not considered
or resolved. Even where details were right, time estimates
seem to be overly optimistic. As a result development time
is greater than originally predicted.

Since dates can’t move, if estimates are off the additional
development required to complete a feature is accomplished
by working extra hours. Development is done hastily. If
development does complete before the due date, less time
than was originally planned is left for testing by QA. The
quality suffers. When customers perform acceptance
testing, they find errors. Customer confidence falls and
tensions in the project rise.

If development cannot complete on time, the very bad news
is conveyed to the customer. The project may be delayed
for several months to fall into a different retail cycle at
great expense to the customer and Tomax. If the feature in
question can be removed from the product, the project may
go into production without the new feature. Tomax loses
credibility. The team within the customer’s organization
loses credibility within their company for choosing Tomax
as a vendor.

This series of events occurs a little too frequently. Often
heroic events on the part of project manager and developers
save the project at the last minute. Often software is

delivered on time, but customers rely on “work-arounds”
for bugs and big usability issues. In reality projects are
generally never a complete failure, but, it’s often hard to
claim success either.

2. Understanding The Problem

2.1 We Know What’s Wrong

Commonly repeated dogma in the software development
industry has project managers chanting “time, scope or
quality, you can have any 2 of the 3.” Sometimes
“resources” gets thrown in as the fourth variable – and then
you get 3 of the 4. But with resources you have Brook’s
Law to deal with “Adding resources to a late project makes
it later.” [4] But, we know what’s going on here: in our
world everything’s fixed and there’s nowhere for the
predictably unpredictable scope changes to escape.

2.2 What Exactly Does “Fixed” Mean?

Expensive resources are scheduled to begin implementation
work on a specific day. Customer payments are based on
hitting a specific release date. This seemed to cement the
time part of the triangle pretty firmly.

Quality – well shouldn’t that be fixed? Poor quality
increases the amount of verification the implementation
team needs, thus increasing time. Releasing with poor
quality negatively affects our reputation with the customer.
At acceptance time customers who see evidence of poor
quality become extra cautious, and, well, downright nit-
picky about things. They are worried about the bugs they
aren’t finding. Since no one is willing to go on record with
a decision to decrease quality in order to deliver all the
scope on time, quality needs to stay as fixed as possible.

Scope pretends to be fixed initially, but inevitably ends up
growing. When feature changes arrive, the changes often
make sense and generally folks feel like if we’d done a little
better job up-front on scoping features, these new features
would have been discovered earlier.

In summary, dates are fixed, scope was initially fixed but
generally grows and changes, and quality, which should be
fixed, suffers. If we are going to make things work, scope
is the area where we need to focus attention.

3. Inventing The Solution

3.1 The Plan to Beat the System

We hypothesized that we could rise above this whole
triangle thing by getting the scope right. We’d have time,

quality and scope by doing a much better job understanding
the scope so our time estimates would be accurate or
alternatively we could commit to the appropriate amount of
scope given the required delivery time. That sounded
simple enough, but exactly how would we go about doing
this?

3.2 Enter Interaction Design

Alan Cooper, in The Inmates are Running the Asylum [8],
defines interaction design this way: “Almost all interaction
design refers to the selection of [software] behavior and
their presentation to users.” It seemed clear that in most
cases scope increased not because we’d done a poor job
with the technical design, but that we simply omitted
behaviors the system required to meet end-user
expectations. Generally speaking, interaction design
practices arrive at appropriate system behavior by first
focusing on the people that will use the system and what
their goals are. Then, given those goals, invent the
smallest, easiest set of tasks that allow the people using
their software to meet those goals.

Identifying the people involved in a particular business
process and their goals may seem too obvious to be a
revelation. Perhaps because the approach seemed too
simple, we’d never considered it. In the past, analysis
focused on capturing complex business rules, documenting
complex process flows, trapping fields and validations that
may be on a complex form. We raced straight to the
difficult details of a business process amassing a lot of
information along the way. That quantity of information
often led us to believe we had appropriate understanding of
the business problem.

While we may have captured an understanding of some
interesting business rules, we often omitted entire people
and their goals related to the process because those people
weren’t a direct participant in this particular business
process. They may have supplied and maintained
information used during that process. They may have had
on oversight responsibility for that process. We may have
failed to take into account the skills, or lack of skills of the
person performing the business process. We may have
failed to take into account environmental conditions, for
example: does this process take place on the fast paced
retail floor during business, or in the back office at a more
convenient time. Simply identifying all the people involved
in the business process and attempting to empathize with
them helped us trap important scope items that we’d have
missed in the past.

Constantine & Lockwood’s Usage-Centered Design [6]
provided an easy to implement process framework to
practice interaction design. While attending training with
Larry Constantine & Lucy Lockwood, I got the chance to

practice the agile form of U-CD best described in the
Constantine paper “Process Agility and Software Usability”
[7]. This form in particular is highly collaborative and
makes good use of card-sorting techniques [6, p83] to
quickly and effectively capture the foundational user roles
and tasks necessary to determine features and a finished
design.

3.3 Enter Extreme Programming and Agile
methodologies

Agile methodologies promise improved project
performance. They certainly seemed like they’d work well
with the collaborative form of interaction design we’d
chosen to practice. We chose to use development practices
from Extreme Programming [2]. We knew practices such
as test-driven development, simple design and refactoring
should improve code quality. Short iterations would give
us more feedback regarding how on or off schedule we
were. Scrum [10] practices such as daily standup meetings
and regular customer demonstration at the end of the month
would keep us focused during development and keep the
customers involved at a minimum of once a month.
Information radiators like those described in Cockburn’s
Agile Software Development [5] would keep interaction
design information, object models and iteration plans on the
wall in plain site where they could continuously inform the
team.

4. Applying The Solution

4.1 Aren’t We Smart!

Combining this 1-2 punch of interaction design and agile
development seemed to be a winner. Initial projects tackled
with this approach were delivered on time, with very high
quality. Contract obligations were met, customers were
happy.

Interestingly, a few unexpected benefits emerged.

• Interaction design forced needed prioritization.
While we identified the people the software served, we
also prioritized them. We often asked “Who are the
people who must be satisfied for this software to be
successful?” Then we applied the some process to
tasks those people performed. We asked “What are
the most important tasks those people need to
perform?”

Even better than knowing the priority, we had the
confidence of watching our customer prioritize people
and tasks himself during a collaborative Usage-
Centered Design session. Our customer owned scope.
Usage-Centered Design card-sorting techniques [6,

p83] engage the customers, make it easy for them to
prioritize and relate people and tasks to each other.
Like using CRC cards [1] for OO design, touching and
handling the cards allows the customer to begin to
visualize the people, start to develop an attachment to
them. They care that those people’s goals are met.
The customers no longer sees scope as an unordered
list of features. They care more about the high priority
people and tasks, and less about the rest. The tasks
became our prioritized feature list.

• XP style estimation attached suitable value to
features.
Putting a price tag on things changes everything. We
involved developers in collaborative design sessions.
We then delivered time estimates along with the
features. We let customers understand price at a more
granular level allowing them to help make trade-off
decisions. Could we simplify or eliminate this feature
and still allow the person using the software to meet
their goals? How about these less important people -
can we make them use less automated processes?
Paper worksheets? Printed reports? What about this
expensive but unimportant feature? Can it be cut
completely?

• Iterative development changes the progress report.
“Percent-completes” on MS project plans were
replaced by interactive demonstrations. We attempted
to complete some features in every iteration. Every
month we’d demonstrate the working software. No one
cared much anymore about this feature being 85%
complete. The working features gave our customers
different questions to ask: “Do I like it?”, “Did I
remember something we didn’t discuss during
collaborative design?”, “Should we change scope?”,
“Now I understand the impact of that feature to the
system.”

5. Nothing’s Perfect

5.1 Trouble In Paradise and Our Plan to Beat the
System

In the previous section I claimed we’d delivered on time
with high quality. Well, since I’m a software developer,
you shouldn’t be surprised to find out that that’s only partly
true. Initially as we proceeded to iteratively develop
features we applied “yesterday’s weather” forecasting [3]
and quickly realized we weren’t going to finish on time.

 While I was attending a workshop on XP planning at
XPUniverse 2002, Ron Jeffries clearly showed in his
Release Results discussion and Excel Model [9] the value
of delivering and placing into use the most valuable features

first. If we deliver the most valuable features early and start
earning that value from them, the remaining features tend to
have less effect on the overall ROI of the software project.
The assertion was even made that after getting the value
from the initial important features that an XP customer may
elect to never complete the less valuable features.

Armed with this knowledge, we diligently built highest-
priority features first. Whenever we spotted a feature not
absolutely necessary to the interaction design’s most
important people and most important tasks we pushed it to
the bottom of the list. We let customers know we were
deferring those less important things, and since we were
deferring them using priorities they’d set, they agreed.

When we arrived at the due date, features were left
unfinished. Strangely no one wanted to talk much about
those features. The customer was happy with the product
and considered our contractual obligations met. We’d met
the schedule and let scope slip. We’d beat the system.

5.2 Fictitious Phase II

In one of our early attempts at managing the project by
building higher priority features first, the particular project
in question had been broken into two phases, one for urgent
delivery this retail season, the next for delivery 6-8 months
later. The customer considered tasks unfinished in phase I
to be something we’d discuss when we collaborated on the
design for phase II. Early in the contractual stage for the
work, rough lists of features for phase I & II had been
decided. Using interaction design principles we identified
some phase II features folks really needed in phase I, and
some phase I features that could be pushed back to phase II.
By the delivery of phase I no one was really sure exactly
what would be in phase II, just that we’d collaborate on it
and it would be good. But, everyone was sure that phase I
would be usable today. It seemed that knowing there was a
phase II, whether we got to it or not, took the tension out of
making sure all features were in the first delivery.

As a postscript, phase II has been indefinitely delayed due
to budget and time constraints with our customer. It turns
out phase I is sufficient for now. Ron Jeffries was right.
With no shortage of work to do for this customer and
others, the development team wasn’t sorry to see the work
pushed back.

Reflecting now on that particular project, it’s not that the
features in phase II didn’t have value, just that their value
was lower relative to those in phase I. Having two phased
releases gave us the opportunity to divide scope into high
and low priority buckets. It gave the customer the
opportunity to evaluate a version of the product only
containing those high priority features. Phase II wasn’t
really fictitious. It may still be built. But by virtue of it
being composed of less important features, its priority

relative to other projects has fallen dramatically. All the
while, the customer has the opportunity to earn value on
those high priority features.

6. Was Something Else Going On?

6.1 “I do not think it means what you think it
means.”1

We believed that the combination of interaction design
practices and agile development practices had enabled us to
succeed, and we certainly planned to continue doing things
this way. But, while explaining our methodology’s success
to Alistair Cockburn, he pointed out other mechanisms at
work that may have been big factors.

• Customer Trust
By collaborating early and continuously with the
customer, we’d proved we could listen to them and let
them set priorities. We demonstrated our software to
them frequently so they could see we were making
progress. In many situations we disagreed with our
customer’s suggestions and voiced our opinions. In
those situations we worked together to arrive at an
approach we could both support. We’d established
early customer trust and maintained it.

• Reduced Feature Coupling
By breaking the project into a concise set of features,
then implementing them one at a time in such a way
that they weren’t architecturally dependent, we always
had a project ready to deliver. By prioritizing most
important features first, the product became usable
earlier. By not assuming we would be required to
deliver all the features, we didn’t build in dependencies
to code not yet implemented. When the inevitable time
crunch came, the customer easily let go of a few low
priority features in order to meet the delivery date.
Since the low priority features were not tightly coupled
to features already completed, it didn’t jeopardize
product stability to defer them. They trusted they’d
prioritized things well for this phase I and would do so
again on the next phase.

1 Quote from Inigo Montoya in The Princess Bride

7. Our Methodology Today

7.1 New Strategies Based on What We Think We
Know Now

Based on lessons learned from and reflection on a few
projects that have used these methods we’ve arrived at a list
of guidelines we attempt to follow when approaching new
projects:

• Keep design general and scope soft. Identify people,
tasks and priorities. Strive for suitable detail. Even
when we think we know detail – keep it out of print.
Especially avoid things like literal screen designs,
database table designs, detailed validation or business
rules. These details are distractions from identifying
the necessary breadth of features and their priorities.

• Recognize customers aren’t adversaries. When we
succeed, they succeed. They want to participate and
help. Take advantage of them for something other than
signing off requirement and design documents.

• Write a Collaboration Plan. Detail the participation
you require from customers during project activities
such as collaborative design sessions, monthly product
reviews, and testing and acceptance of delivered
software. Publish this plan internally and to your
customer.

• Phase Delivery. No matter how small the project is,
break it into at least 2 phases. Require the customer
take delivery of, install and perform acceptance on at
least 1 delivery prior to the final delivery. A successful
phase I builds confidence in the design, the team and
the software. A successful phase I is easier since
there’s less tension about making sure all scope is
present in the delivery. Working with phase I
deliverable helps customer identify what scope might
be unnecessary and what scope might need to be
added.

• Plan To Drop Features. When creating release plans
for the release of each phase, make sure the release
includes some low priority features. Make sure the
construction of the software allows for the easy
removal or disabling of incomplete features. Make
sure delivery is always possible.

8. Reflection

Our particular domain of software development forces
unique time constraints on our project deliveries. Our
customers require important custom features and demand
high quality. We’ve not found the silver bullet approach
yet that helps us break out of the dependencies of time,

scope and quality. However, by understanding and
accepting that there are dependencies then working to
create flexibility in scope, we’re able to successfully deliver
projects on time. We’ve learned that by using
methodologies such as Usage-Centered Design, Extreme
Programming, and Scrum, along with general principles of
agility, we’re able to leverage close customer collaboration,
early progress feedback, and designs that allow us to omit
features. This allows us to soften scope that was once rigid.
Where we used to feel happy to survive the delivery of a
project, now we’re able to enjoy successful delivery with
our customers.

9. Acknowledgements

Thanks goes to my supportive team at Tomax Corporation.
Special thanks to Alistair Cockburn for encouragement and
advice; to Brian Marick for wonderful supportive feedback;
to the Salt Lake Agile Discussion Group for their
continuous stream of good ideas and discussion; and, finally
to Stacy and Grace for their every day encouragement, love
and support.

10. References

[1] Beck, K and Cunningham, W., A Laboratory for
Teaching Object-Oriented Thinking, OOPSLA
Conference Proceedings, October 1989.

[2] Beck, K., Extreme Programming Explained, Addison-
Wesley, November 1999.

[3] Beck, K. and Fowler, M., Planning Extreme
Programming, pp 33-34, Addison-Wesley, October
2000.

[4] Brooks, F., The Mythical Man-Month, Addison-
Wesley, August 1995.

[5] Cockburn, A., Agile Software Development, Addison-
Wesley, December 2001

[6] Constantine, L, and Lockwood, L., Software For Use,
Addison-Wesley, April 1999

[7] Constantine L., Process Agility and Software Usability,
Information Age, August/September 2002,
http://www.foruse.com/articles/agiledesign.pdf

[8] Cooper, A., The Inmates are Running the Asylum,
Sams, April 1999.

[9] Jefferies, R., Results of Frequent Release, XPUniverse,
July, 2002,
ftp.xprogramming.com/ftp/ReleaseResults.xls

[10] Schwaber K. and Beedle, M., Agile Software
Development with Scrum, Prentice Hall, October 2000

