Bringing
User-Centered

Design Practices
Into

Agile Development
Projects

Jeff Patton

ThoughtWorks
jpatton@thoughtworks.com
jpatton@acm.org

Bringing User-Centered Design Practices into Agile Development Projects

Today Day at a Glance

Part 1: The Agile Project Context

In part one I'll lay a foundation for understand Agile Software Development and its place in
software development approaches generally. You'll learn that although Agile Development
doesn’t refer to a single specific methodology that most Agile approaches follow a fairly
consistent process flow.

You'll begin to learn a bit about the communication and collaborative work styles typical of
Agile Development by modeling business goals — a concern near and dear to the heart of
most Agile approaches and practitioners.

Part 2: Project Inception & Planning

In part two I'll describe Garrett’s simple model of User Centered Design that’s helpful in
explaining the work of designers to Agile practitioners. Using that model and correlating it
with our model of Agile Development we’ll get some suggestions about how best to handle
project inception and planning.

We'll build a simple user model to understand our users. We'll build a simple task model to
help us visualize our users’ workflow then use that model to help us plan multiple
incremental releases of our software.

Part 3: Building & Validation

In part three we'll dive headfirst into a simulated Agile Development cycle. You'll need to
understand just a couple quick concepts before you can plan your product releases. Then,
given that plan you'll use paper prototyping to build the first release of the software you've
planned.

Part 4: Adapting & Thriving

Because no one ever gets things right the first time, and Agile development places big
emphasis on adaptation, we’ll make adjustments to the software we built in our first
release. We’ll also add additional features to create a better second release.

We'll close the day by talking about a few organizations that have successfully adopted Agile
Development and strong User Centered Design practices. We'll discuss common attitudes
and approaches they share that have allowed them to be successful.

Jeff Patton, jpatton@thoughtworks.com 2

Bringing User-Centered Design Practices into Agile Development Projects

Handouts Table of Contents

Speaker Informationcooii i
Part 1: The Agile Project Context.....ccooviiiiiiiii i,
You're engaged in @ Process MiniatUure..........uvuieeiiiiieiiiiesiiinesninnesennnes
Agile Software Development from 10,000 Feetccovvivviiiiiiiiiinennnne. 11
Collaborative Modeling SeSSIONiiiuiiiii i eeaneens 21
(@F=] o 1) (o] o o 211 T PSP P 25
Filtering and Prioritization ..o 26
Our Design Problem: Barney’s Information Kiosk Project...............co.... 28
Business Goal and Metric Model........ooiiiiiiiiiiiii i i e 30
Part 2: Project Inception & Planning........ccccoiviiiiiiiiencene, 41
Product Requirements and Design at 10,000 Feetcccovviiiiiiiiiinnnnns 48
Common Concepts In Agile Development and User Centered Design...... 56
D L= =] o= 57
Weaving the Requirements and Design Process into Agile Software
D TSAVZ<1 o] 0] 1 =] 0| oXP 58
A User Role is a Type of User in Pursuit of a Goalcooovviiiiiiiiinnee. 63
Building a User Role Model......coiiiiiiiii i i i enaee e 64
Plan Incremental Releases as System Spanscccooiviiiiiiiiiiiciiinennns 76
Part 3: Building & Validationccoviiiiiiiiiic e 85
Manage Feature SCaleoviiii i i i e 93
Feature Thinning GUIdeliNeScuiiiiiiii e 96
Considering Scale When Planning and Estimating a Release.................. 99
Thinning and Building Up Features During Iterative Design and
[DSAVZ<1 o] 0] 1 =] o) oXP 101
User Interface Paper Prototyping and Usability Testingc......... 112
Task to Abstract Components, Step by Step....covvvviiiiiiiiiiic e 112
Component to Paper Prototype, Step by Step ...vvvvviiiiiiiiii 118
Usability Testing a Paper Prototype, Step by Step ...ccvvvviiiiiiiiiinnnn. 121
User Story Driven Development Processes and User Interface Design.. 126
Reflective Process Improvement.......ccvviiiiiiiiii i niee e nneeeeas 130
Part 4: Adapting & Thriving......ccooiii i 133

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Speaker Information

Jeff Patton has designed and developed software for the
past 12 years on a wide variety of projects from on-line
aircraft parts ordering to electronic medical records.
Since first working on an XP team in 2000, Jeff has been
heavily involved in Agile methods. In particular Jeff has
focused on the application of user centered design
techniques to drive design in Agile projects resulting
leaner more collaborative forms of traditional UCD
practices. Jeff has found that adding UCD thinking to
Agile approaches of incremental development and story
card writing not only makes those tasks easier but
results in much higher quality software.

Some of his recent writing on the subject can be found
at www.abstractics.com/papers and in Alistair
Cockburn’s Crystal Clear. Jeff’s currently a proud
employee of ThoughtWorks, an early adopter and leader
in Agile Development approaches. Jeff is founder and
list moderator of the agile-usability discussion group on Yahoo Groups.

Website and blog: www.agileproductdesign.com
Discussion group: tech.groups.yahoo.com/group/agile-usability

Jeff Patton, jpatton@thoughtworks.com 4

Bringing User-Centered Design Practices into Agile Development Projects

Part 1: The Agile Project Context

In part one I'll lay a foundation for understand Agile Software Development and its place in
software development approaches generally. You’ll learn that although Agile Development
doesn’t refer to a single specific methodology that most Agile approaches follow a fairly
consistent process flow.

You'll begin to learn a bit about the communication and collaborative work styles typical of
Agile Development by modeling business goals — a concern near and dear to the heart of
most Agile approaches and practitioners.

Notes

ThoughtWorks:

Tne art of heavy liftng™

Meta Tutorial

Q I don't think you're here to learn User Centered Design
o If you accidentally learn something, I won't be held responsible
Q Agile-Dip
o You'll be dipped in a Agility via an Agile Development Process Miniature

o Observe Agile development lifecycle
0 Observe Agile collaboration and communications styles

Q Your new role: user centered evangelist

o Learn to communicate user centered thinking throughout the design and
development team

0 Adapt your current approaches to increase transparency and outward information
flow

0 Adapt your current approaches to leverage the daily involvement of other
development team members outside the UCD team

o Today you'll hear a lot of language that may help you better explain user centered
design thinking back to an Agile team

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

You're engaged in a Process Miniature

You'll learn about this approach by participating in a “process miniature.” You'll rapidly
discover requirements for, plan the incremental release of, design, and build software in an
Agile project. Although user centered design approaches are similar conceptually, many of
the specific UCD techniques we’ll be using are adapted from Constantine & Lockwood’s
Usage-Centered Design.

"New processes are unfamiliar and perplexing. The
longer the process, the longer before new team -:@
members understand how the various parts of the
process fit with each other. You can speed this
understanding by shrinking the time taken by the
process. This is the Process Miniature.”

"Run the entire process in a very short time period
(a few minutes to a few days).”

-- Alistair Cockburn

You'll learn collaborative user centered design and
project planning by doing it — at least a little bit of
it. While participating, think about how you might
attempt some of these approaches in your organization.

B What sorts of challenges would you encounter?

B What sorts of problems could it solve?

B Also take note of the card sorting and modeling activities.
|

Are there other tasks where card sorting and modeling might be useful?

A note about these notes:

While the notes do follow along with the slides and the subject matter we’ll be discussing in
this tutorial, they also include lengthy excerpts from articles and other work not yet
published. Please don’t stop to read them during the tutorial. Do use these notes as
reference later on should use choose to use some of these concepts or techniques in your
day to day work.

Additional Reading
Constantine & Lockwood, Software for Use, 1999, Addison-Wesley

Cockburn, Process Miniature, http://c2.com/cgi/wiki?ProcessMiniature

Jeff Patton, jpatton@thoughtworks.com 6

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting

The Waterfall Model remains
the traditional software development approach

O Traditional design & development
Requirements steps are separated into distinct
phases

O Workproducts produced at each
phase & handed off to the next

Q Risks

o Errors in each phase are passed to
the next

o Time overruns usually come out of
final phases - development and test
often resulting in poor quality

o0 Poor quality on top of upstream
problems in requirements and design
often adds insult to injury

o Most practitioner’s waterfall
implementation lack Royce’s original
suggested feedback loops

Design

Development

Testing
& Validation

* Winston Royce, Managing the Deployment

Development of Large Software -
System, 1970 & Maintenance

Thought\Works:

The art of heavy lifting:

The Spiral Model Introduced
Iterative Refinement in the '80s

The Spiral Model
OBJECTIVES: RISKS:

Determine obJectlves Evaluate alternatives,
alternanves constraints identify & resolve risks

\
REV!EW *
qu.\xenems plan
_*____,,
\ Devebpment
pl

Imegnnm
e andtestplan

is]
aralysis

Acceptame 5t
Revnew status Sewice Bt DEVELOP:
and plan next phase — Develop and verify
(From Bochm 1988) next level product

O Iterative elaboration from prototype to finished release
O Important addition of planning & risk evaluation
Q Risks

o Product remains prototype till final spiral revolution

Notes

Additional
Reading:

Winston Royce,
Managing the
Development of
Large Software
Systems
http://www.cs.umd.
edu/class/spring200
3/cmsc838p/Process
/waterfall.pdf

WikiPedia, Waterfall
Model,
http://en.wikipedia.o
rg/wiki/Waterfall_mo
del

Additional
Reading:

Barry Boehm, A
Sprial Model of
Software
Development and
Enhancement,
http://www.sce.carle
ton.ca/faculty/ajila/4
106-
5006/Spiral%20Mod
el%?20Boehm.pdf

WikiPedia, Spiral
Model,
http://en.wikipedia.o
rg/wiki/Spiral_model

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

The Origins of Agile Development Spring From Early
Discussions on Adaptive Incremental Development

ThoughtWorks:

The art of heavy lifting:

The Psychology of Computer Programming — Gerald Weinberg, 1971
The Mythical Man Month, Fred Brooks, 1986

Scrum, Ken Schwaber, Mike Beedle, 1986

PeopleWare, DeMarco & Lister, 1987

Borland’s Software Craftsmanship, 1994

Dynamic Systems Development Methodology, 1994

o000 00D

Crystal Methodologies, Alistair
Cockburn, 1997

Feature Driven Development, Jeff
DelLuca, 1998

a Adaptive Software Development, Jim
Highsmith, 2000

a Extreme Programming, Kent Beck,
2000 (origins in 1996)

O

Coining The Agile Software
Development Label

ThoughtWorks:

The art of heavy lifting*

O XP’s success acts as a catalyst
O Meeting of 17 at Snowbird, Utah, 2001
O All participants disagree on specifics
O All agree they have something in common
O 4 principles of the Agile Manifesto

ile
lilance

% www.agilealliance.org

Notes

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Notes
Thought\orks:
ap= . Additional
Agility is a Value System Reading:
Q The agile alliance is based on 4 core values: = Martin Fowler, The

New Methodology,
http://www.martinfo
Working Software Over Comprehensive Documentation wler.com/articles/ne

o
o Customer Collaboration Over Contract Negotiation whethodology.htm
o0 Responding To Change Over Following a Plan

o Individuals and Interactions Over Processes and Tools

Q 12 additional principles support the 4 basic values emphasizing:
o0 Iterative development and delivery
o People — both individuals and teams
o Collaboration
0 Technical excellence

ThoughtWorks:

Tne art of heavy lifting™

No Rules

O There's no specific way to be or not be Agile

O Agile describes an approach to a method, not the
method itself

O The Pornography Rule:
"[can't define pornography,
but I know it when I see it."

--Supreme Court Justice Potter Stewart, 1964

O Use the 4 principles to evaluate a methodology’s
\\Agilityll

Jeff Patton, jpatton@thoughtworks.com 9

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Agile Development Usually Follows a
Predictable Lifecycle

Feature or User Story

« Expressed from business or user perspective
= * Business value
@ « Estimable
« J Feature List: prioritized features
@ w (AKA Product Backlog)

Iteration
—
)

* 1-4 week timebox
Releasoan Incremental
Incremental Release '@ Release
* 1-6 Iterations
* Released internally or
externally to end users l Product/Project Charte

* Perpetually released

Product or Project ‘

11

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Agile Software Development from 10,000 Feet
The Agile Methodology Isn’t

Before we get too far along, it's important to underscore one particular point: Agile
Software Development isn’t a specific methodology. Rather, Agile Software
Development refers to a general class of software development approaches.

In 2001 a group of thought leaders using a variety of light weight, low formality software
development approaches met to discuss what, if anything, they had in common. The result
of that discussion was a common core set of values and principles described in the Agile
Manifesto. A specific approach might be considered Agile if it honors those values and
principles.

If you own any books regarding Agile development methods, or you've done a little
research, you've probably read the Agile manifesto already, but I'll include it here for you to
ponder. The Agile manifesto is expressed as a series of four simple paired value statements
where both items in the pair have value, but one item is valued more than the other.

Individuals and interactions over process and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

When determining if a methodology is Agile, I find that I have to use the pornography rule
as quoted by Supreme Court justice Potter in 1964: “I can’t define pornography, but I know
it when I see it.” The same seems to be true of Agile Development methodologies.
Understand Agile values and you’ll know an Agile methodology when you see one.

For many these value statements read like motherhood statements - simple truths hard to
disagree with. Others believe that the “this over that” format incorrectly asserts that one
side of the statement is at odds with the other - for example that valuing individuals and
their interactions is somehow at odds with valuing a solid process and effective tools. If one
of the goals for the Agile Manifest was to cause discussion about these things, it’s indeed
accomplished that. And oddly what comes out of discussions about the value of people,
collaboration, working software, and responding to change are flexible resilient
methodologies, effective tools, innovative approaches to documentation, the rethinking of
the contract, and new approaches to planning and project management. Go figure.

There are a few named Agile Methodologies very well described in books written by their
creators and/or practitioners: Extreme Programming (Beck, 1999), Scrum (Schwaber and
Beedle, 2000), Feature Driven Development (Coad, LeFebvre & DelLuca, 1999), and Crystal
(Cockburn, 1999-2004). All these books describe methodologies that share the common
value system expressed in the Agile manifesto.

I'm confident that there are named Agile approaches that I've missed. I'm equally confident
that there are a multitude of variations currently in use within a number of software
development organizations. I often meet people and talk with them about their
development approach. After just a little conversation with them, it’s easy to describe what
they’re doing as Agile. They’ve adopted and adapted a variety of processes and techniques
to best fit their organization. Along the way, and often without specific intent, they’ve used
what we're calling Agile values to guide their approaches. Agile Development didn’t invent
those values - just gave us a single phrase to refer to them by.

Jeff Patton, jpatton@thoughtworks.com 11

Bringing User-Centered Design Practices into Agile Development Projects

Those foundational values are the important thing. It's quite possible to adopt a named
Agile approach such as XP or Scrum and use all the techniques, but do so in a spirit contrary
to Agile values. So while process, tools, documentation, contracts, and plans are valuable
and many Agile approaches describe approaches for all of them, it’'s the soft stuff — people,
collaboration, responsiveness - Agile Development emphasizes that makes the difference.

This book describes the innovative techniques and approaches that emerge when the Agile
value system is applied to the process of software product design and requirements.

General Specifics:

If you're new to Agile Development approaches, I might have led you to believe that there’s
little consistency among Agile approaches. That’s not exactly true. There are a few durable
concepts that can be found in most Agile approaches - sort of an emerging Agile best
practices. When we combine these best practices, and step far enough away, most Agile
approaches actually begin to look very similar. If we're going to work with requirements in
an Agile context we need to understand these common ideas. Let’s discuss a model that
gives structure to these common ideas.

Feature Development:
[I don't like the term feature - it has baggage in that it indicates a solution to a problem -
not an unsolved problem]

Most Agile development approaches break work down into small hopefully independent
pieces of work. XP might call this a “user story,” while Scrum might call it a “backlog item.”
I'll use the somewhat neutral term “feature” here. An Agile feature will dependably have a
few qualities:

Customer-Centric:

A feature is described from the perspective of the people or group of
people requesting it and not the language of the engineering group
creating it.

Value:

The feature will have some understandable value to its user or the
organization purchasing the software.

Cost:

Enough is understood about the feature so that the cost of developing,
testing, and integrating the feature into the software can be roughly
estimated by a development team.

Verifiable:

Once the feature is added to the system, there will be a way to test
that the feature is in place and behaving as expected. This test may
take the form of observation or manual use by a human or automated
test case executed by a computer system.

Jeff Patton, jpatton@thoughtworks.com 12

Bringing User-Centered Design Practices into Agile Development Projects

Features are developed in repeating cycles of
designing, building, and testing. When designing
we'll decide a few things about the feature. We'll
build those few things. Then we’ll test that the
feature meets the small amount of design we've
done. We'll cycle through these three steps a
number of times before we can call the feature
completed.

Sometimes a feature might be broken down into
smaller development tasks completed by different
developers. Each task might spin through the
design-develop-test cycle a number of times before
they're all integrated together to form a completed
feature.

Figure 1.1: feature development

Iterative Development

Agile development uses an iteration to build
features. An iteration is a time box with specific
start and end dates. Iterations are commonly two to
three weeks in length, but might vary shorter or
longer in any specific organization - although much
longer than a month is uncommon.

An iteration is preceded by a planning session to
choose the features that will be built within the time
box. This activity is normally collaborative and
involves developers, testers, and business people
requesting the features.

With a plan in place the iteration begins and
developers start work on features business people
have chosen to build.

As the end of the iteration time box approaches,
iteration testing might begin. Though each feature
was tested independently, the group of features are
generally tested together as a coherent whole.

Test Driven
Development

The development technique: Test
Driven Development seems to
indicate that we're writing the
tests prior to writing the code -
which seems to break the design-
develop-test cycle suggested.

But that's not exactly true.

Test driven development has a
software developer describing the
expected functionality of a piece
of code in an executable unit test
prior to writing that code. Once
the code is written correctly, the
executable unit test will pass.

Test driven development isn’t
actually testing, but designing.

The code I might write in my unit
test describes the design I'd like
to see reflected in the code I'll
write. The running unit test
doesn’t confirm my code is bug
free, just that it meets the design
I described in my unit test. Test
Driven Development is a thinking
technique; a designing technique.

You'll find many Agile approaches
recommend writing tests prior to
writing functional code - both unit
tests for individual bits of code,
and acceptance tests for features
visible to end-users. The act of
writing these tests is an act of
describing functionality — an act
of design. Depending on how
thoroughly the tests were written,
executing them after the code
was written might be enough to
call that code tested. In practice
it’s common to look back at the
running code, and the tests that
go with it and ask “what could
possibly go wrong with this
code?” At that time additional
tests might be added and
executed to support those
conditions - to thoroughly test
the functionality.

Jeff Patton, jpatton@thoughtworks.com

13

Bringing User-Centered Design Practices into Agile Development Projects

When the time box ends, the iteration ends. Uncompleted features are carried forward for
consideration in the next iteration’s planning session.

Wrapping feature development with iterative development grows our model to look like
figure 1.2.

e e
~ : [A |
{ layalan M 2/
S vl P L .
ST T T
i { lact)]
wd R —— R e
P reawui e] P—
i A
Iy £ A
YN A TN
AL o BN A b N v
- Dacicn)] Soo= S
R — i e . Y
B e Fyu=lij=mks O
. P N VAT 4
T ___,.-"" E""——-—,.-q.-—-q"'_’
Texi = P Y
Iteration FPian e ___am_ . A y
=\ ilieranon (¢ /4 1
| B S 1
[: |
vos i
Pl [] [™ J
A riaii A f,’
e
*, !
hY i
\ /
e 4
e e
— g
— o

Figure 1.2: Iterative development of features

Increment to Release

Short iterations give more frequent opportunities to gauge development performance,
evaluate the current state of the product, and adjust features and priority. It may be
difficult in this short amount of time to build a set of features complete enough to be placed
into use by actual end-users. In situations such as this, it’s helpful to package several small
increments into a software release.

A release is preceded by a release planning session where one or more software releases
are planned. During the planning session the features for each release are determined with
an emphasis on choosing a set of features that makes each release useful to the people
who'll receive it. During release planning, rough estimates for development time by feature
are made. Using these estimates, release dates can be forecast along with the number of
iterative development cycles it might take to complete a release.

With a release plan in place the features for a release are fed forward to iteration
planning where features will be chosen to be built in the first iteration. The rhythm of
iterative development kicks in and the features of the release are built an iterative chunk at
a time.

As the end of the release date approaches, release testing might begin. Just as features
were combined during iterations and looked at as a coherent whole, all the finished features
for the release will be looked at and evaluated as a coherent whole with a special emphasis
on the usefulness of the group of features in the release. Will the release be useful? Will it
be marketable?

Wrapping iterative development with incremental releases grows our model to look like
figure 1.3.

Jeff Patton, jpatton@thoughtworks.com 14

Bringing User-Centered Design Practices into Agile Development Projects

q .

Incremental
Release

Release Rlan
)

Figure 1.3: Incrementally released, iteratively developed features
Products and Projects

Every release contributes to further the goals and vision of a product or project. If we're
doing this work in support of a product company, we're keen to make sure that each release
helps us gain or at least hold onto market share. It's important that each release furthers
the goals of the product. If we're releasing against an internal IT project it’s important that
each release support the goals of the project which are usually to increase the productivity
of the organization paying for the development.

A product or project is usually driven by a set of high level goals or a project charter. This
charter states the goals for the software. These high level goals might be expressed as
financial objectives for product sales or increased efficiency along with a plan for how those
objectives might be realized.

A product’s life might span years or decades. Hopefully projects won't live that long. But
as releases of the product are built and delivered the product/project is evaluated against
the goals established for it in the charter.

Wrapping incremental release with product and project chartering might change our model
to look like figure 1.4:

Jeff Patton, jpatton@thoughtworks.com 15

Bringing User-Centered Design Practices into Agile Development Projects

Incremental
Release

‘ Product/Project Charter Product / P roj ect

< Plan

Figure 1.4: Chartering an incrementally released product or project

The Agile Waltz

As I'm writing this someplace in the back of my mind I'm recalling my feeble approaches at
ballroom dancing. I'm hearing a voice in my head chanting "One-two-three, one-two-
three...” as my feet try to remember which way to step when dancing to a waltz. As I think
about Agile development I'm seeing that one-two-three waltz tempo repeated in the cycles
I've described above “plan-build-test, “plan-build-test...” Agile development, when done
well, is as rhythmic as a good waltz.

Think about dancing to a nice waltz for a minute. (If you're not a good dancer, go ahead
and imagine that you are.) When you're done, let’s look back at the model in figure 1.4.

The Recursive Build
This is where our dance metaphor breaks.

You might notice that the feature is a three step process, but iterations, releases, and
projects might look like they only have two steps. The feature has a step labeled “develop”
where the feature we’ve conceived of is coded in some programming language. This is the
“building” part of the features. You’ll notice that the feature “bubble” on our model is glued
into the iteration bubble. Iterations are built out of features - or design, developing, and
testing features is the “building” part of our iteration. Continuing out, releases are built
from iterations, and products and projects are built from releases. The building part of each
cycle is accomplished by the smaller cycles it encloses.

At the building bit of each cycle we start by planning again, then building, then evaluating.
At the feature level, the bubble marked “develop” over-simplifies what'’s really going on
there. In reality an Agile developer will cycle through the plan-build-test cycle many times

Jeff Patton, jpatton@thoughtworks.com 16

Bringing User-Centered Design Practices into Agile Development Projects

in the process of development. A developer might do a tiny bit of planning or design by
writing some unit test code. That would be followed by writing some actual software code.
That would be followed by running the unit test code to test that the design worked as
hoped. One-two-three, One-two-three....

The Big Plan Up Front

You might be starting to notice how much planning is done in Agile development. Every
cycle begins with a plan. In a new product or project all the planning bits of a cycle feed
into each other. Plan after plan after plan after plan. In our model of swirling bubbles, it
might be a little hard to see what’s happening over time. In figure 1.5, we’ll squash it flat
and take a look.

A J

time

\ I\ Feature

Project Charter)| Release Plan Iteration Plan J{Feature Design
/ l/ Development

< detail I

course fine
grain qrain

Figure 1.5: Granularity of planning over time.

In figure 1.5 you're seeing how each cycle’s planning precedes and feeds into the next.
What's important to note is that the granularity of planning changes for each cycle with the
planning step for each cycle growing more detailed or fine grain as the cycle time decreases
in length.

Design is a Synonym for Plan

You might notice that I've been a little loose with my use of the terms “plan” and “design.”
In my head they used to be very different things. Planning was an approach I used to
schedule activities and resolve their dependencies in order to reach a goal. Design was a
creative process where I'd choose specific qualities of a thing it might have in order for it to
satisfy a goal. The difference might have been the accepted use of creativity in design vs. a
firmer analytical approach that I might adopt when planning. Over the years the
boundaries for me have begun to blur.

As I've learned more about user centered design approaches, software design has adopted
a flavor of being more analytic — analytic without losing its dependence on creativity. Using
the analysis models and techniques supplied in user centered design approaches has
allowed me to be more successfully creative.

As I've run projects over the last decade, I've seen that the job of keeping a project on
course and dependably delivering requires much more creativity and intuition than I'd
originally suspected.

Merriam Webster clearly calls out design as a synonym for plan — which, given my previous
views confused me. Today I'm seeing software development as a continuous process of
design and planning, followed by doing and evaluating. One-two-three, one-two-three...

Given that we’ll be doing so much continuous design, how does a user-centered design
approach lend itself to our need to segment design into packages that vary in granularity

Jeff Patton, jpatton@thoughtworks.com 17

Bringing User-Centered Design Practices into Agile Development Projects

from course to fine grain? Jesse James Garrett’s User Experience model discussed in the
next chapter will help to visualize that.

Feedback, Feedback, Feedback

You might also notice that each cycle’s testing step feeds the next higher cycles’. Individual
features are tested against the original goals described for the feature. All iteration features
are tested together with respect to each other and the goals of the iteration. The results of
all iterations are tested together with respect to the goals of the product.

As with planning and design, testing is done continuously and at different levels of
granularity from the smallest individual feature to the product as a coherent whole.

Test is a Synonym for Evaluate

OK, it’s not really a synonym from the dictionary’s perspective, but I'll use it that way here.
It's important to understand that all this testing isn’t about the features merely being
implemented and working as expected, but about the features accomplishing the goals set
out for the product, release, and iteration. It's quite possible to have a feature that works
as designed and required, but simply doesn’t have the qualities predicted for the product
and release. It’s quite possible for all features designed and required to be implemented for
a release, but for that release not to fulfill the goals of end users or business people who
paid for the development. At the end of each cycle of feature development, iterative
development, or release development, it’s critical to evaluate the value of the feature
relative to the goals of the product, release, and iteration.

The results of all this testing and evaluation feed back into the iteration plan, release plan,
or project charter.

By feeding back, I mean that the tangible results from feature development, iteration
development, and product release might indeed change features, iteration plans, release
plans, and project charters. Yes, I mean they might change requirements. Evaluation
cycles give us a chance to learn from what we’ve done thus far and adapt early to
information we didn’t know when initially planning and designing.

These feedback cycles that seem to invite change to requirements are an example of a
process adaptation to the Agile value of responding to change over following a plan.
Effectively gathering and responding to feedback is one of Agile development’s defining
characteristics, and most troublesome problems to solve.

The Other Important Thing to Evaluate

A common technique used in Agile approaches is a Reflection or Retrospective session.
Normally this takes place at the end of an iteration or release. One of the primary goals of
the reflection session is to look back at the specific process followed over the last cycles and
determine if the development approach is meeting its intended goals. Just as the
evaluation of features may result in changes to the project plans or requirements,
evaluating process may result in changes to process or tools.

[references on reflection, forward reference for reflection technique discussion]

But Wait, There’s More...

The Agile Development model discussed here stops at the product and project. But, we all
know the world is a bit bigger than that. Products and projects usually exist in a portfolio of
possible products and projects. The decisions we make about specific products are usually
made in the context of other products and the time resources available to them. The

Jeff Patton, jpatton@thoughtworks.com 18

Bringing User-Centered Design Practices into Agile Development Projects

portfolio level decisions are made against the backdrop of the company who's paying for the
products and their general goals, financial or otherwise. If that company is owned by a
larger parent company, that company’s general goals and direction is help set by the parent
company. The concentric cycles continue to radiate up and out. In all cycles there’s an
element of decision making and planning, an element of execution and building, and finally
an element of evaluation, reflection, and re-planning.

Agile Development Distilled

Agile development may be characterized by short cycles of planning and design, building,
and testing and evaluation.

Cycles may be at a very detailed and tangible level - like the design, building, and testing of
a single feature. Cycles may be at a higher abstract level like the design and planning of a
product release, its construction, and subsequent evaluation of the finished product.

Much of the challenge in Agile development is found in the area of planning, design, test,
and evaluation. How can we plan at a high level and defer the design of small feature
details for later? How can we frequently evaluate what we’ve built against our high level
plans and adjust those plans accordingly?

Additional Reading

Beck, Extreme Programming Explained (Addison-Wesley, 1999)
Beck, Extreme Programming Explained 2"? Edition (Addison-Wesley,

2004)

Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams
(Addison-Wesley, 2004)

Cockburn, Agile Software Development 2" Edition (Addison-Wesley, 2006)
DSDM Consortium, DSDM: Business Focused Development (Pearson Education,
2003)

B Highsmith, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems (Dorset House, 1999)

Larman, Agile and Iterative Development: A Manager's Guide (Addison-Wesley,
2003)

B Palmer & Felsing, A Practical Guide to Feature-Driven Development (Prentice Hall,
2002)
m Poppendiek & Poppendiek, Lean Software Development (Addison

Wesley, 2003)
B Schwaber & Beedle, Agile Software Development with SCRUM (Prentice Hall, 2001)

Jeff Patton, jpatton@thoughtworks.com 19

Bringing User-Centered Design Practices into Agile Development Projects

Agile Development’s Carrot and Stick is
Often the Creation of “"Business Value”

Notes

ThoughtWorks:

The art of heavy lifting:

a Usler Stories or product features are generally prioritized by business
value

O Incremental deliveries generate business value

O To understand a proposed software requirement, it's common for an
Ahgil_? practitioner to ask: “How does the business get value from
this?"

0O However what the business is really trying to achieve is often not
well understood

O Use a simple model to communicate business goals and the metrics
used to track their progress

oldentify and prioritize user constituencies
oPrioritize business stakeholder concerns

oPrioritize suggested product features

O A Business Goal Model allows us to validate subsequent product

decisions
12

Use a GQM Style Approach To Identify
Business Goals And Appropriate Goal Metrics

ThoughtWorks

The art of heavy fiftng

O Leverage a simple approach from the GQM methodology
O Identify and prioritize goals
o To help identify goals consider these questions:
How will the organization improve after the delivery of this software?
What will happen if we don’t deliver this software?
o IRACIS - How might this software:

= Increase Revenue, Avoid Cost, or Increase Service

O Question each goal:
If we were making progress toward this goal, how would we know?
What would change in the business as a result of reaching this goal?

O Use answers to these questions to identify metrics for goals
0 Metrics help quantify ROI
0 Metrics helps justify ongoing development expense

o Requirements to track metrics often generate important product features

13

Additional
Reading:

®Van Solingen &

Berghout,
Goal/Question/Me
tric Method, 1999,
McGraw-Hill
Education

Forrester Research,
Goal-Question-
Metric Method Is
Still The Most
Pragmatic Way To
Develop Metrics,
http://www.forrester
.com/Research/Docu
ment/Excerpt/0,721
1,37381,00.html
Goldsmith,
Discovering Real
Business
Requirements for
Software Project
Success, 2004,
Artech House
Publishers

Jeff Patton, jpatton@thoughtworks.com

20

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy

Capture Goals In a Model Using a
Collaborative Modeling Session

QO Use Collaborative Modeling Sessions to:
o Build up tacit shared knowledge within the team

0 Build communication and collaboration skills within the
team

o Help the team to gel as an affective workgroup
Q Prepare

o Write a short statement to set goals and scope for the
session
o Identify participants — 4-8 is ideal
o Fill These Roles:
= Information Suppliers
= Information Acquirers
= Information Modelers
= Facilitator
= Documenter

o Schedule & set up worksession facility

e’

Q Perform O Document & Communicate
o Kickoff with goals and scope o Capture model with photo and/or movie
o Get information figuratively and literally on the table o Document as necessary

using brainstorming or discussion

o Model the information to clarify, add details, distill Displ "
details, and understand relationships 0 Display as a poster

o Close by summarizing the results, on camera if possible

o Post in publicly accessible place

14

Collaborative Modeling Session

The collaborative modeling session has a goal that blends the ideas of acquiring information,
distilling information, and potentially collaboratively designing solutions to problems. It's
best used when information exists in the heads of participants. While the information may
also exist in documents, or across other models, the goal of a collaborative modeling
session is extract information from the participants of the session, distill it, and modeling it
in such a way that it's easy to understand and can be communicated to others.

In addition to quickly distilling and representing large amounts of information, the
collaborative nature of these sorts of sessions have the affects of:

B Building up tacit shared knowledge within the team
B Building communication and collaboration skills within the team

B Helping the team to gel as an affective workgroup

As with interviews and collaborative design, the collaborative modeling
session follows a similar structure of prepare, perform, evaluate.

Preparation

Preparation takes a bit of time and engagement from one or more team
members, ideally including the person who will later serve as a facilitator
during the session. Preparation itself takes a bit of thought and creativity.
Consider performing this activity with two team members pairing at a
whiteboard or at a tabletop using card modeling. Capture information for
later documentation.

Jeff Patton, jpatton@thoughtworks.com 21

Bringing User-Centered Design Practices into Agile Development Projects

Set goals and/or scope

For a collaborative modeling session you’ll have some information you wish to gather or
consolidate from the participants of that session. In addition you may have a goal to
leverage collaboratively interpret that information and subsequently leverage it to make
design decisions. To keep the session focused, decide on the goals and scope for the
session. You'll have a hard time ending it if you don't.

Try completing the sentence “this session would be successful if...” to help identify the goals.

Try completing the sentence “The information we’ll need to consider is...” to help identify the
scope of concern for this session.

Summarize your ideas for goals and scope in a concise statement.

Identify participants

Choosing the best possible participants of a collaborative modeling session is one of the
most important elements of success. Given the goals of collecting and distilling information
and spreading that information throughout the team, who you choose will affect the
information you gather, the quality of that distillation, and the ultimate destination for that
information — the heads of those who participated.

Leveraging the goals and scope for the session will help you choose appropriate
participants. Look for participants that can fill the following roles:

Information suppliers

Information suppliers contain the critical information in their heads that needs to be
modeled or distilled. They might “just know” the information because they’re subject
matter experts of some type. They may have studied documents that contain the
information. They may have performed interviews with others that have the information in
their heads. However it came to get there, information suppliers have information valuable
to everyone in their heads.

Information suppliers may come to a collaborative worksession with documents or other
sources of information ready to reference. They’re the experts on these documents and can
quickly navigate them to identify relevant details to the group.

Information modelers

The ideal information modeler has used collaborative modeling techniques before to
represent, organize, and distill information. They’re comfortable working with index cards,
sticky notes, or whiteboards. While it's true that most everyone in the session will engage
in modeling, an expert modeler or two helps things move more smoothly.

Information acquirers

Information acquirers need to learn and leverage the information modeled in
the session. They may be a business person who needs to leverage the
information to make better decisions, a designer that will need to help make
specific scope decisions, a developer who'll need to make specific technical
design suggestions, or a tester that needs to understand how best to test
the resulting software. A good collaborative modeling sessions contains
people that can acquire and leverage the information to help the design and
development process.

Jeff Patton, jpatton@thoughtworks.com 22

Bringing User-Centered Design Practices into Agile Development Projects

In addition seek to fill these following roles to help the session run smoothly and preserve
the outcome of the session.

Facilitator

The facilitator understands the collaborative modeling approach and can help guide all the
other participants through it to help meet the goals of the session. The facilitator will keep
an eye on the scope of the session use a parking lot to park out of scope ideas that come
up during the session. Sometimes multiple team members can perform the facilitator role
by alternating the responsibility at different times during the worksession. But, only one
person should be in the facilitator role at any given time.

Documenter

At the end of the session someone will need to take responsibility for gathering up the
model or models that result and documenting them in such a way that they’re easily
leveraged by the session participants, others in the design and development team, and
possibly other external stakeholders. The documenter should be prepared to shoot a
model photo, prepare a model poster, and/or presentable distillation.

Remember that these are roles that can be filled by anyone in the team. One team member
may fill multiple roles simultaneously. For instance information suppliers will likely move to
the role of modelers, and assuming they acquire information they didn't have coming into
the session, they’ll also be information acquirers.

However, it is difficult for the role of facilitator and documenter to be filled by someone also
in the role of information inquirer. The demands of those roles make it difficult to also be
sharing information effectively.

A good collaborative workgroup might contain 5-8 participants. Smaller groups might work
OK, but lack the high “bandwidth” of information that can be supplied and acquired with
more participants. Larger groups may also work, but take clever facilitation to make the
best use of participants’ time and produce useful modeled output.

Question the participation of people that don't easily fit into any role. For instance someone
who doesn’t have much information, won’t be participating in the project longer term, and
hasn’t done any of this sort of collaborative modeling won’t be very valuable.

Prepare collaboration supplies

Gather collaboration supplies that will help the team effectively model.
It's difficult to get the right people into the room. Don't let the effort stall
for lack of some sticky notes, index cards, or tape.

Schedule modeling session

A good collaborative modeling session might run 90 minutes. If the session
needs to run longer consider scheduling a 15 to 30 minute break to split the
session in to two. Schedule the session in a room with a large work table to
model on and/or wall space to hold models and a parking lot.

Jeff Patton, jpatton@thoughtworks.com 23

Bringing User-Centered Design Practices into Agile Development Projects

Performing

Kickoff

The facilitator should kickoff the session by reminding everyone why they’re here. Review
the goals and scope with the collaborative team. Adjust the scope and goals if necessary.

Make sure everyone on the collaborative team knows each other. Consider allowing time
for introductions if people haven’t worked together before.

Review the roles with participants: suppliers, modeler, acquirers, facilitator, and
documenter. Let people know which role you think they fill.

Discuss the process you'll be following during the session.

Model

During modeling you’ll perform a variety of modeling techniques in a sequence that best
suits your goals. It's common to engage in brainstorming or card storming to get a lot of
information on the table. It's common to build affinity diagrams to find distill and find
relationships in the information. It's common to build other ad hoc models to show the
relationships of information in the model. It's common to use prioritization mechanisms
to identify the most important or focal areas of the model.

While modeling you'll find that important ideas emerge that might fall out of scope for this
session. Make sure you have parking lots and feed forward bins set up to receive that
information.

Summarize and reflect

A few minutes prior to end the session take a moment to gather up all the elements of the
model. Allow one or more team members to verbally summarize what the model
represents. Allow for time to make minor corrections.

If more time for modeling is needed, discuss a subsequent session.

The documenter should discuss what they will do to document and communicate the
information to others.

Before parting, take a moment to gather parting takeaways from the team members.

Document, & Communicate

The documenter will have the responsibility of collecting the model or models built and

communicating them back to others. A good documenter will find help or delegate as much
as possible. Before leaving the documenter should snap some model photos to help recall
the exact positions of elements in the model and to help communicate the results to others.

The results of the session need to be communicated to others. This allows them to reflect
on what happened after the session and add or change details if necessary. Choose a
communication strategy that is most visible for the team working on the design and
development of the software. A model poster prominently displayed in a public area
allows members of the team to gather around it for discussions and to easily write ad hoc
changes on to the model. A presentable electronic distillation allows others to use it in
meeting presentations to communicate outward to others, or for the information to be
posted for sharing with others not collocated with the design and development team.

Jeff Patton, jpatton@thoughtworks.com 24

Bringing User-Centered Design Practices into Agile Development Projects

CardStorming

You've likely engaged in brainstorming activities before.

Often times brainstorming occurs by those in the room announcing their ideas, and a
facilitator writing them down on a white board or flip chart paper. We're then left with the
challenge of refining the list - removing duplicates and obviously poor candidate ideas.
Then given a smaller subset of good ideas, we may then need to find common ideas or
themes, or simply prioritize the list. All this is challenging when starting from a list on
paper or whiteboard. Basically the brainstorming part was easy, making sense of the
results becomes the difficult bit.

But we're card modelers now, right? We know that using card sorting and modeling
techniques we can make sense of large amounts of information.

CardStorming is a brainstorming technique described by Larry Constantine & Lucy Lockwood
in Software For Use. It's a very effective way to brainstorm then move quickly and directly
to using card sorting and modeling techniques to do the tough work with the information
we've acquired.

To run a CardStorming session:
B Arrange a group of participants facing each other around a worktable

B Place on the table a couple big stacks of index cards and fat felt tipped markers

B Designate one or two participants as recorders. One recorder is sufficient in a
group of 5 or less, two is better in a group of 6 or more. It'll be the recorders’
responsibility to record ideas directly onto index cards as participants shout them
out.

B Determine how you'll end your session: either time-box the session using a kitchen
timer, or agree the session ends when there’s a long uncomfortable silence between
ideas.

B Start the brainstorming by inviting participants to shout out ideas while recorders
write them on 3x5 cards and toss them into the middle of the worktable where
participants can see them.

@ When the time is up, or an uncomfortable silence is reached, it's time to stop.

Remember the most important rule of brainstorming: do not discuss or criticize ideas
during the session. It's okay to ask a clarifying question but nothing more.

Brainstorming is supposed to be fast paced and fun. You can kick creativity up by shouting
out silly or obviously inappropriate ideas.

4

If the recorder gets behind, it's ok for him to shout “whoa, whoa - give me a minute here.
It's also okay for another person to help out and begin recording. But it is important the
participants see and hear the ideas being tossed out. If everyone talks at once and/or
writes at once, they’re not hearing, thinking about, and leveraging each other’s ideas to
come up with more ideas.

When brainstorming is complete there are a few immediate actions you can take:

Jeff Patton, jpatton@thoughtworks.com 25

Bringing User-Centered Design Practices into Agile Development Projects

Filtering and Prioritization

Filtering

Filter and clean the list by sorting the list into three piles: obviously useful ides, ideas to
discuss, and ideas to discard. You'll find silly things and duplicates obviously arrive in the
pile to discard. To filter:

B Label three areas on your table: keep, discuss, and discard.

Split the deck of ideas into two or three piles

Hand a pile to a workshop participant

Participants start placing the pile into one of the three areas. Place the cards such

that everyone else can see them. If someone disagrees with the placement, they're

free to move the card to another pile.

When all cards are placed, bundle up the “discard” pile and toss it in the trash.

Simple prioritization
With a list of ideas written on cards, it's easy to begin prioritization.

B Select an area on a worktable to place the cards while you’re establishing their
priority.

B Label one area “high priority” — usually far left of top

B Label another are “low priority” — usually far right or bottom

B Split the deck of ideas into 2 or 3 piles

B Hand a pile to a workshop participant

B Participants start placing the ideas on the table where they believe the priority

should be - toward the high end if it's high, toward the low end if it's low.

This can work well because it’s often easier to prioritize an idea against one or two ideas
that it’s similar to. Laying the ideas out spatially allows us to easily find and place an idea
near ideas of relative importance.

From here it's easy to begin detailed discussions about ideas and priority. It's easy to
change our mind and slide a card to a different place on the table.

Democratic prioritization:

Oftentimes it's not critical that we understand where all ideas fit in priority but rather
understand what the top three or four ideas to focus on are. Sometimes you’'ve already
spent time arranging index cards into a model that represents your understanding of
relationships between ideas and rearranging the ideas into priority order at that point will
break the model showing these relationships.

Use democratic prioritization to allow collaborators to vote for the highest priority ideas.

B Arrange index cards on a table in an arrangement that that makes it easy to find

information. You may already have a card arrangement such as a role model or task

model that you're working with.

B Give each member a number of tokens to vote with and ask collaborators to place
votes on the ideas they think are most important. They may place multiple tokens
on an idea. As with all democratic processes participants may try to persuade each

Jeff Patton, jpatton@thoughtworks.com

26

Bringing User-Centered Design Practices into Agile Development Projects

other to vote differently - that’s good. The conversation that occurs helps deepen
everyone’s understanding of the context these ideas are prioritized in.

For tokens: stickers work okay, or simply making marks on index cards that you vote
for. But, I prefer physical objects that are easy to move so that collaborators can
change their minds or coerce each other to vote a certain way. The wrapped pieces
of candy mentioned as useful in your toolkit work well as voting tokens.

The number of votes to give each member is tricky. Each member should have one
or two votes less than they wished they had - to really force them to think hard
about what they believe is important. The number of votes is a function of the
number of participants, and the number of ideas in model. For a model with 50-60
cards built by 3-4 collaborators four votes per collaborator might be in order.

Generally 2-5 votes are appropriate for most circumstances.

When all votes are placed, total the number of votes on each index card that
received votes. You'll find that most arrangements of index cards have 2-3 ideas
that are clear winners, and 6 or more that receive votes. Before removing any
voting tokens, mark the cards with a symbol such as a star for each vote, four votes
get four stars. Use a bright color of pen ink to make it easy to identify the index
cards with votes. It's easy in a model marked this way to identify the high ranking
ideas, and distinguish the highest ranking ideas from lower ranking ideas and
unranked ideas.

Myths and misconceptions about prioritization

Prioritization is based on context - which might change over time and prioritization
with it

Fine grain prioritization difference often don’t matter — except when they’re near the
\\edgell

Use “focal” as a label for high priority items

Additional Reading
B Gottesdiener, Requirements by Collaboration (Addison-Wesley, 2002)

Jeff Patton, jpatton@thoughtworks.com

27

Bringing User-Centered Design Practices into Agile Development Projects

Our Design Problem: Barney’s Information Kiosk Project

You're on the in-house software
development team for Barney’s Media.
You and your team have been called in by
the operations management team to
discuss a new piece of software that
Barney’s needs written. Before you can
ask too many questions, the operations
management people start telling you what
they want.

They remind you that: Barney’s is a new
but growing national retail chain. Their
stores contain, on average, 4000 square
feet of floor space housing over 20,000
unique titles of both new and used CDs,
DVDs, and video games. While the store
is conducive to browsing, it’s tough at
times to find a particular item quickly.
Customers who know what they want
have a hard time finding it in the store.
Customers have a choice between new
and used items and often an item that
isn't in stock as used may be available
new, or vice versa. Often the title they're
looking for isn't in this store at all, but
may be in another Barney’s store or could
easily be special ordered. In those cases
Barney’s would like to special order the
item for them.

Today the only way to get help locating or
special ordering an item is to wait in line
for a cashier, or trap a sales associate in
the aisles. Currently, sales associates
hate to leave the safety of the cashier
desk. A walk from the cashier desk to the
back office can often take 10 minutes to a
half hour as a result of all the folks

While discussing the domain

consider:

B Who are the people who will be using
this system?

B Why would they use it?

B What goals do they have?

B What kinds of activities might they do
to meet their goals?

B What happens if they don’t meet their
goals? — Who loses?

B What happens when they do meet
their goals? — Who wins?

B Are there users who monitor and
protect the interests of other users?

item. The folks at the information desk
stay pretty busy all day fielding questions
as well.

The management of Barney’s believes
they can enhance the customer’s
experience at the store and ultimately sell
more product by creating self-service
touch-screen information kiosks within the
store. At these kiosks, customers could
get answers to their questions about the
items they‘re looking for, their availability,
and their location in the store. Optionally
if the item isn’t in stock, they could
arrange for it to be special ordered or sent
to them from another Barney’s location or
set aside at that location for pickup.

The types of customers coming into the
store vary immensely. Some may be very
comfortable with information kiosks while
others may have never used one before.
Some may be using the kiosk to quickly
find a CD, DVD or game; others may be
using it as an alternative way to browse
the available titles in the store.

Executives at the Barney’s corporate office
believe they can enhance store sales by
“suggesting” like-titles to customers
looking for a specific title. They believe
they can enhance store sales by
encouraging customers to special order
titles they don’t currently have in stock.
They believe it would be valuable to know

Jeff Patton, jpatton@thoughtworks.com

28

Bringing User-Centered Design Practices into Agile Development Projects

how often customers look up or ask for
titles not currently in stock. They also
believe they can reduce labor costs at the
store a bit by allowing customers to help
themselves. So these executives can feel
comfortable they’ve spent their money
wisely, they’ll expect statistics on how
many people, by location, are using the
kiosks. It would be valuable to know how
many times customers looked closer at
suggestions made by the kiosk. It would
be valuable to know how many special
orders were placed through the kiosk.

Your design and development team has
been given the task to design and build
this new information kiosk. Barney’s
already has massive databases of the
items they carry, inventory systems that
tell them which and how many items are
in stock at each location, and order entry

systems to place special orders. Your
team will need to integrate this
information in a piece of kiosk software.

The operations management team doesn’t
have specific functional requirements past
those discussed here. They're looking for
an estimate from your design and
development team that suggests the
functionality they should build and the
timeframe it will take to build it. They’d
like to see a functional kiosk in stores as
soon as possible. In fact, if you can't get
something functional in stores within a
couple months, we’ll outsource it to
another team that can.

What will you build? And, how soon
before we can see something running and
put it into pilot stores?

Show me the money:

information to meet stakeholder needs.

For more information see:

While considering requirement, many designers make the mistake of only considering
direct users of the software. Those with concerns about the effectiveness of the software
and/or its ROI are often set aside as “stakeholders.” Stakeholder concerns are often
addressed in the software’s detail design by ensuring the software captures necessary

Consider promoting your stakeholders to users. If the stakeholder were a user, what
could the software do to demonstrate to these stakeholder-users how much money it’s
earning for them? Should stakeholder-users have access to current information on
software performance? Should they receive warning when things aren’t going well?

http://www.abstractics.com/papers/showMeTheMoney.pdf

Jeff Patton, jpatton@thoughtworks.com

29

Bringing User-Centered Design Practices into Agile Development Projects

Business Goal and Metric Model
The business desires to build

ThoughtWorks:

software to reach particular Activity: Build A Simple Business Goal
goals. Those goals n‘_nght be Model
stated a number of different
ways in documents that charter 1. Start by CardStorming user goals 3. Sssrsgi;))r?a‘tr:[;/lzﬁs:ls To Arrive at

] O One or two team members act as
or fund the prOJeCt. GoaIS may recorders transcribing goals onto
be spoken of in a number of index cards If we were making progress toward this
different ways by business a ggfrﬁesr?s)uttoog;pgtzfés for goal, how would we know?
stakeholders within the What would change in the business as a
Organization . Often those How &;illdd;e organiz}f:l.t-i<>-n imPTU:’C result of reaching this goal?
business goa|s are stated in an after the delivery of this software? 4. BuiI_d a Poster to Communicate Your
ambigUOUS or inconsistent What will happen if we don’t deliver Busm;e:s G(:]als ot of et |
manner. This makes it difficult this softare! o rowhereEa el e e
for any one person to deliver a IRACIS - How might this software: Vg -
consistent answer on what the Increase Revenue, Avoid Cost, or ¢ =

Increase Service?

business goals are. If the
business goals are unclear, how
then can we determine if
software being built helps the
business reach those goals?

2. Consolidate & Prioritize Goals

Unclear business goals make it difficult to easily determine if software
you’ve chosen to build actually helps the business reach those goals.

A good first step is to pull business stakeholders together and attempt to agree on goals.
This is often difficult and results in goals written in such a way that all business stakeholders
can agree on them which often means they're imprecise. What’s also common are goals
stated in such a way that it’s difficult or impossible to determine if the goal is being met or if
progress is being made towards meeting a goal. What helps a project most are concise
easy to leverage business goals coupled with metrics that allow the business and the
software’s designers to determine if the product is successful. These goals act first as a
target for choosing user constituencies to support, and features to build. Without this
design target, successful results are unlikely, accidental and often but sadly undetectable.

Building a simple business goal and metric model distills what we
understand about business goals and gives its reader an understanding of
how progress towards that goal is measured. The business goal model acts
as the design target that allows us to choose software users to support and
features to build that help reach these goals.

The Model

The business goal model actually doesn’t look the way you’d normally expect a model to.
It's not composed of boxes connected by lines, rather it’s a simple bulleted list of goals, and
metrics associated with each goal. There should be very few goals, 1-5. Each goal should
be supported by metrics that help us measure progress towards that goal, 1-3 metrics per
goal. I refer to it as a model because it’s a distillation of what we believe to be true at the
time it was created. We'll base other decisions on this model. But, since it's a model, we
know it might change; which might result in changes to decisions based on this model.

Jeff Patton, jpatton@thoughtworks.com 30

Bringing User-Centered Design Practices into Agile Development Projects

A best way to construct a goal model is to use a collaborative modeling session. Follow the
general approach to a collaborative modeling session along with the specific advice below.

Plan a goal modeling session

1. Identify scope of concern

Goals can occur at a variety of different levels. Starting at very high levels like: happiness
and world peace, to very low or detailed levels like: get to work on time. Set a scope of
concern for the goals you're about to model by writing a short statement about that scope.
A good statement might be:

“"We'd like to identify goals that would allow us to determine if the next
release our software is successful.”

or

“"We'd like to identify goals for the new product we’re considering funding
the development of.”

To help focus scope consider the product or business area of focus and the timeframe. A
single product for next release for example. Other example might be an entire business
unit over the next year or a single team developing a single set of features for the next
internal release of a software product.

Given the session goal of creating a simple goal model, and the goal scope you’'d like to
target, you're ready to move forward to identify best participants.

2. Identify participants

An effective goal modeling session might include 5-8 participants. Start by identifying the
participants of the session.

B One participant serves as facilitator. The facilitator may be a member of the
implementation team, but it’s a bad idea for the role to be filled by a business
stakeholder.

Participation from key individuals from the development team responsible for
building the software is important. Key individuals might include a leader developer,
lead tester, lead business analyst, lead user experience or designer. Include at least
two individuals from the development team. They will function as information
acquirers and modelers.

B Business stakeholders make up the remainder of the participants. These might
include a project sponsor, members of constituent user groups, sales and marketing
team members, technical support team members, or members of the organizations
executive team. They will function primarily as information suppliers.

If you're unable to assemble a team balanced with business stakeholders and design and
development team leaders, you may assemble others that can make assumptions about
business goals. But consider it a risk to the quality of the results. Try to obtain feedback
on the resulting model from the business stakeholders and expect that feedback will likely
result in change to the model.

You may elect to conduct business stakeholder interviews and bring the distilled data from
those interviews to the modeling session. One or more members of the team should study
this data, preferably the person who conducted interviews and distilled the data. They will

Jeff Patton, jpatton@thoughtworks.com 31

Bringing User-Centered Design Practices into Agile Development Projects

function as information suppliers. Plan time in the meeting to review this data prior to
building the goal model.

3. Prepare collaboration supplies to use for capturing results during the
modeling session.
You'll likely need index cards to model, pens, tape, and poster paper.

4. Set a time and place for the meeting.

Expect the meeting to be as short as 30 minutes, but don’t plan to spend longer than 90
minutes.

Conduct the modeling session

1. Kickoff modeling session and set goal context
Kickoff the modeling session.

Making sure the group knows each other. Allow them to introduce themselves if they
haven't worked together before.

Describe to the group the process you’ll be following.
Set up parking lots of feed forward bins as necessary.

Discuss the scope of concern for the goals you'll be modeling. Adjust the scope of concern
as necessary based on the discussion.

2. Brainstorm Goals

Start by creating a candidate list of business goals and business problems to solve.
Brainstorm the goals and problems on to index cards. You may wish to use a brainstorming
technique such as cardstorming.

Goals or pains

The evil twin of the goal is the pain point. At times it may be difficult to understand exactly
what the goal of a particular activity is, while it may be easy to name the pain or problem
that you're trying to eliminate.

For example say you're working for a hypothetical software company where the current
release of the product has generated huge numbers of support calls. This has resulted in
the need to increase support staff at great expense. And still customer hold times are high,
and customer satisfaction is decreasing. This is clearly a problem that needs to be solved in
the next release. A brainstorming session focused around the next release of the software
might yield the pain points: “too many customer support calls,” or “poor customer
satisfaction.” It's easy to move from these statements of pain to goals that might alleviate
the pain such as “"Decrease need for customer support.”

For the purpose of brainstorming business goals, consider problems or pain points as
interchangeable with goals. We'll have opportunity to consider the language we choose to
express them later. Coach the team brainstorming goals and pains to give both goals and
pains.

Jeff Patton, jpatton@thoughtworks.com 32

Bringing User-Centered Design Practices into Agile Development Projects

3. Refine Goals

Once brainstorming has slowed or stopped, cluster the goals and pains using an affinity
diagram.

For each cluster of goals and pains, as a team write a new card that best summarizes the
goals and pains in the cluster. If it's difficult to write a goal statement splitting the cluster
may help separate out ideas that are making it difficult to summarize.

4. Prioritize goals

Gather the cards that summarize each cluster of goals. These will be the refined list of
goals we'll prioritize.

Use the scope of concern to help set foundation for the prioritization. It's good to restate
that scope, along with questions that frame the prioritization exercise. Questions like:
“which of these goals are most critical to achieve for this product for the scope we're
considering?” are helpful.

You could lay the goal card on the table to perform simple prioritization. Or, you may
choose to prioritize goals using a voting approach as in democratic prioritization.

Hopefully your session contains a mixed group of business stakeholders responsible for
defining goals and setting priority, and development team members responsible for
designing and building the product to meet those goals. You may choose to allow only the
business stakeholders perform the prioritization while others look on and ask questions.

At this point a good prioritized goals list has 1-3 goals that are easy to agree on as high
priority. The goal list could be fairly long, but it’s difficult to manage the design and
development of a product with too many goals to consider. Choose the highest priority
goals to single out and emphasize. One to three are ideal. Try to choose no more than
five. These become our focal business goals.

5. Question goals and capture metrics for focal business goals

To make these goals more tangible and allow us to make better downstream design choices
it's important to identify metrics that help us determine if we're making progress towards
these goals.

For each goal ask the question:

"How would we know if we were making progress towards this goal?”
Brainstorm and capture the answers to these questions on index cards as candidate metrics
for each goal.

For example given a goal like:
“decrease need for customer support”
possible metrics might be:
B “number of support calls relative to products sold.”
B “average duration of support calls”
B “number of email requests for support’

Defining measurable goals like this might compel us to do further analysis on the nature of
support calls we're getting today. Areas of the product that have the highest frequency and
duration of support goals may be best areas to focus design and development efforts on.

Jeff Patton, jpatton@thoughtworks.com 33

Bringing User-Centered Design Practices into Agile Development Projects

Allow subjective metrics along with a more objective way of gathering an measuring change
in them. For example let’s assume we’re upgrading software used in our internal call
center. Today our agents claim that they really hate the software. It's often mentioned in
exist interviews as a factor in quitting.

Given a goal like:

“increase user satisfaction”

Possible metrics might be:

“satisfaction rating 1 to 10, 10 being very satisfied”

Take a measurement today by polling the current agents of the software. The same
question might be asked of agents testing interim released of the software, and of agents
after the software is released and installed. Changes in this measurement will give some
indication of increases or decreases in user satisfaction.

After writing out possible metrics for a goal, eliminate obviously bad ideas. As a group
discuss the metrics. Do they really help us determine if we're making progress on this goal?
Are there other factors that influence the metric such that if may give us inaccurate
measurements of our goal? Multiple metrics per goal better give a picture of progress on
the goal. If one metric is influenced by other factors, possibly the other metrics will help
give better indications.

Rewrite goals

Often the discussion of metrics results in the realization that a goal is difficult or impossible
to measure. It's at this time we need to ask if this is a reasonable goal. If our organization
can’t detect if we're making progress against it, then it’ll be very difficult to let this goal
guide us in making detailed design and scope decisions.

Rewrite or eliminate goals that can’t easily be measured.
For each goal identify one to three metrics you might use to measure progress on the goal.

Feed forward product feature ideas

Often when defining metrics for goals you may detect that the software may need
functionality that captures and reports on these metrics so that can be observed. You might
realize that someone in management would be very interested in seeing these metrics on a
regular basis. This information is useful to place in a feed forward bin labeled “product
feature ideas.”

As ideas come up for possible software features, park them in a feed forward bin for later
consideration. Then continue on with your discussion.

6. Summarize and reflect

Close the modeling session by reviewing the prioritized focal business goals. Ask a business
sponsor or other business stakeholder to do this review. There should be one to three
goals, ideally no more than five. For each goal review the metrics that measure progress
towards that goal. If possible use a camera to record a video of the review.

If the model wasn't completed before the end of the timebox, discuss times to continue the
session.

Identify the team member who will be responsible for documenting and posting the goals
where they can be seen and used.

Jeff Patton, jpatton@thoughtworks.com 34

Bringing User-Centered Design Practices into Agile Development Projects

Close by circling around the group for parting takeaways.

Distill, document, and communicate goals

For these goals to be relevant and leveraged, they must be accurately captured and
displayed in a prominent location.

Record the names of the modeling session participants.
Take a model photo to help participants recall what happened during the session.

Document the model as a model poster, powerpoint distillation, or in some other document
that can be easily used by the project team and external business stakeholders.

Along with the focal goals and metrics, the documented business goals should contain the
names of the group responsible for arriving at them and model photo to help others relate
to the process used to arrive at these goals.

Jeff Patton, jpatton@thoughtworks.com

35

Bringing User-Centered Design Practices into Agile Development Projects

You've Just Experienced “"Hot”
Com m u n ication [without dialing a 900 number]

e

Face-to-face allows vocal, subvocal, gestural
information to flow, with fast feedback

2 people at
whiteboard

In Cockburn’s
Agile Software

2 people communication varies

Communication Effectiveness

on chtit_/ in temperature.
- . i
e Answe! Increasing
Mo & communication
cooler AUARRRILE

temperature is an
important tenet of Agile
Development.

Richness of communication channel

-

©Alistair Cockburn =

Slide 22

17

Notes

ThoughtWorks:

The art of heavy lifting:

You've Just Built an Information
Radiator

(People don't ask questions if they have to

climb stairs.
Think $300,000 / yr penalty.
(1/3 work year)
In Cockburn’s
Agile Software
Development, he
describes Convection
Currents of Information.
oo, @ 0 Think $100,000/ yr penal’s. « proximity
0% o (1.5 work month) +|Osmosis
’ —— * Drafts
» Radiators
(However, this fact makes for a useful strategy sometimes,

ref: Cone of Silence))
®Humans and Technology, Inc., 1998-2003 ide

Alistair Cockburn

ThoughtWork

The art of heavy lifting*

Additional
Reading:

= Cockburn, Agile
Software
Development 2™
Edition (2006,
Addison-Wesley)

Jeff Patton, jpatton@thoughtworks.com

36

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

Additional

Agile Environments Leverage Information .
Reading:

Radiators to Socialize Information
= Patton, Finding the

Forest In the Trees
(OOPSLA practitioner
report, 2005,
http://www.abstracti
cs.com/papers/Findi
ngTheForest.pdf)

A task model shows workflow, supports release planning
and incremental development

Agile Environments Leverage Information
Radiators to Socialize Information

Navigation Maps and Storyboards describe user
interactions

Jeff Patton, jpatton@thoughtworks.com 37

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

Agile Environments Leverage Information
Radiators to Socialize Information

Development often proceeds leveraging whiteboard
wireframe prototypes

Notes

Tne art of heavy lifting™

Agile Environments Leverage Information
Radiators to Socialize Information

nnoy Users

Beviove says Bove says
r————.

User models and UI guidelines communicated in posters

22

Additional
Reading:

= Vutpakdi , Top Ten
Ways Poster,
http://tech.groups.y
ahoo.com/group/agil
e-
usability/files/Vutpak
di%20Examples%?26
Presentation/

Jeff Patton, jpatton@thoughtworks.com

38

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy liftng

Large Displayed Models Serve as a
Backdrop for Ad Hoc Collaboration

Brian, Frank, and Justin discuss their work with Mark

against the backdrop of a workflow model
23

ThoughtWorks:

Tne art of heavy lifting™

Recorded Discussions While Building
a Model Serve as Documentation

Zack explains the lifecycle of a railroad car lease to me

using the domain objects in the system
24

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Part 1 Agile Tips For Ux Practitioners

Notes

ThoughtWorks:

The art of heavy lifting:

1.

Differentiate incremental release from iterative
development: use iterative development to experiment and
validate before end users will use the application

. Align UCD practice with business goals: know the business

goals, bind user models, task models, and feature choices to
business goals

. Model in collaborative worksessions: build models and work-

products in collaborative cross-functional teams

Heat up communication: always try to deliver information face-
to-face supported by a paper or whiteboard models. Support
documents with conversation to discuss them. Consider video
documentation

. Radiate information: leverage visual communication skills to

model concisely and socialize information

25

Jeff Patton, jpatton@thoughtworks.com

40

Bringing User-Centered Design Practices into Agile Development Projects

Part 2: Project Inception & Planning

In part two I'll describe Garrett’s simple model of User Centered Design that’s helpful in
explaining the work of designers to Agile practitioners. Using that model and correlating it
with our model of Agile Development we’ll get some suggestions about how best to handle
project inception and planning.

We'll build a simple user model to understand our users. We'll build a simple task model to
help us visualize our users’ workflow then use that model to help us plan multiple
incremental releases of our software.

Jeff Patton, jpatton@thoughtworks.com 41

Bringing User-Centered Design Practices into Agile Development Projects

Notes
Thought\Works:
] S Additional
Garrett’'s Elements Model Explains Clearly How User Reading:

Experience is Built From Dependent Layers

= Garrett, Elements

Concrete of User Experience
@ \ (http://jjg.net/eleme
sor/zce nts/)
]
sHe/eroy

Yy
Abstract

Jesse James Garrett’s Elements of User Experience

28

i A, | HOught\Vorks:
The Surface Layer Describes Finished ' >

Visual Design Aspects

[l crovon exce- ook -lolx
S) e Bt Yew Juet Fgmat Took Data Wndow bep ..
DEHIIA7R 4 0B-F2-0-RZ U BSwx -u]]

Surface xod co-BZBwrdaAr Jannaonm FETY) i
Al SIS
_mB.C.D.E.F.G‘“‘wa -
. (1]
. ™
4) Blark workbook
5) From exstrg workbook
6 Templates.
Skeleton 3 =
8
9 P Templats on Offce Crine
10 @ on my compuer
1" (38 On my Wb shes.
12
13
"
15
16
17
18
19
20
21
2
z i
24
) -
o ¢ W\steett /w2 /Sheets / 1¢l | Ul
Ready

29

Jeff Patton, jpatton@thoughtworks.com 42

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy liftng

The Skeleton Describes Screen Layout and
Functional Compartments in the Screen

@@ Surface S5EEB5ERTRAREEAREEE T

[| Skeleton D

30

ThoughtWorks:

Tne art of heavy lifting™

Structure Defines Navigation from
Place to Place in the User Interface

(© Surface
el

task 5
El Skeleton i

v iHiHﬁ

modal dialogs
|| ||

' v !

modal wizards
| |

31

Jeff Patton, jpatton@thoughtworks.com

43

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy liftng

The Places in the User Interface are
Built to Support User Tasks

user tasks:
@ Surface . enter numbers

* enter text

« enter formulas

» format cells
| Skeleton sort information

« filter information

» aggregate information
e graph data

» save data

* import data

» export data

 print

32

Notes

ThoughtWorks:

Tne art of heavy lifting™

Business Goals Drive User Constituencies
and Contexts Supported To Form Strategy

business goals:
@ Surface « displace competitive products
* motivate sale of other
integrated products

El Skeleton + establish file format as default
information sharing format

user constituencies:
» accountant

* business planner

» housewife

o e

usage contexts:

- office desktop

* laptop on airplane

e pdain car

33

Jeff Patton, jpatton@thoughtworks.com

44

Bringing User-Centered Design Practices into Agile Development Projects

Garret’s Elements of Ux Stack Applies to the User
Experience of Other Complex Products

O These layers of concerns apply not only to software but a variety of
products

O In particular, products that support a wide variety of user tasks
benefit from this kind of thinking

34

Notes

ThoughtWorks:

The art of heavy liftng

Let’'s Look At a Product We All Use:
The Place We Live

goals:

live comfortably

eat well

stay clean

be healthy

keep up with Jones’s

(© Surface
El Skeleton

user constituencies:

* me

* spouse

« child

usage contexts:

» suburban neighborhood
* near good schools

* near shopping

35

ThoughtWorks:

Tne art of heavy liftng™

Jeff Patton, jpatton@thoughtworks.com

45

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy liftng

What might I do to reach my goals?

user tasks:

@ Surface * store food
» prepare food
 eat food
* sleep

| Skeleton i

« store changes of clothing
 stay out of rain
 entertain guests

* entertain self

36

ThoughtWorks®

Tne art of heavy lifting™

Arranging tasks by affinity allows me to think abou
contexts that best support tasks. Contexts in a
home have common names we all know.

Covered Porch
Surface
Bedroom
14-2x 14-4 " I— — —

e
e Breakfast
Living Room

16-2x15-2

906 1T ()

El Skeleton

9 [
10

P

Kitchen

96x 11-10

Dining
14-0 x10-0

Bedroom 2

12-4x106 Storage I T

Utiity |
L 7-0x80 |
o ‘EI

o

Stoop

Two Car

PLAN#: 1329 Garage

21-4x21-0

37

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Notes

When designing a particular interaction context — a
kitchen for instance — I optimize layout and tool

choices to support tasks I'll do there.

ThoughtWorks:

The art of heavy liftng

[dw sink . ref

(@) Surface

Skeleton D "‘“‘“’/
warming

drawer

cooktop

-double ovens

laundry

= hall

| table

to informal
sitting room

walk-in
pantry

38

I'm going to spend a lot of time here, I want my
experience to be as pleasant as possible...

®

ThoughtWorks:

39

47

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Product Requirements and Design at 10,000 Feet

Requirements Are Designed

To quote Alistair Cockburn from an aside conversation: "A requirement is a relationship to a
decision: If you get to make or change the decision, it's design to you; if you don’t get to
make or change that decision, it's a requirement to you.”

As we move from very high level business goals for a product or project through to the
details of what that product will specifically look like and do, we have thousands of
individual decisions to make. All of those decisions are tested or evaluated against what we
know about the problem we're solving. It could be a high level problem like “what sort of
features would appeal to stock portfolio managers in our new portfolio management
software?” or a low level problem like “should the edit feature be accessed with a right click
from the mouse, a button, or a menu choice?” All of these decisions are made based on
what we know at the time. All of these decisions are made by a variety of different people
at a variety of different times.

Once written down and agreed upon, all of these decisions can be thought of as
requirements. The process we go through to determine what facts are important to
consider, and the subsequent process of making that decision is what I'll refer to here as
design. It's a difficult and creative process that demands a variety of skills and techniques
to do well.

Requirements are Captured

Once design decisions are made, they can indeed be written down, or captured. But, I'l
assert here that the hardest part of this process isn’t the capturing, but the deciding, the
designing. The general approach we’ll leverage here is for design is User Centered Design
(UCD).

An important factor of User Centered Design is the capture and documentation of not only
the decisions made, but the factors used in making those decisions. For example a UCD
practitioner might capture what is known about a type of user being served in a user profile.
While that user profile doesn’t necessarily describe any feature of the product, it does
describe the important factors about users used to make decisions about what features are
important in the product. (In chapter 3 we'll discuss a variety of models to capture what we
know about users including user profiles.)

<illustration: simple user profile>

The captured part of requirements are the decisions made and the important factors
considered to make those decisions.

Traditional Requirements Processes Only Deal with Half the
Story
In his 1987 essay “No Silver Bullet” Fred Brooks said:

“The hardest single part of building a software system is deciding
precisely what to build.”

Traditional requirements engineering, if there is such a thing, focuses on the activities of
elicitation, analysis, specification, and validation, then on managing the resulting
requirements as they change throughout the product’s development. Terms like elicitation
imply that people already know the requirements; we need only draw them out. Terms like

Jeff Patton, jpatton@thoughtworks.com 48

Bringing User-Centered Design Practices into Agile Development Projects

analysis seem to imply a methodical process of the breaking down of large things into their
simpler parts. Neither term adequately describes the process of creatively inventing a
number of possible solutions then deciding precisely what to build from among those
solutions. Traditional requirements approaches, while useful at giving us notations for
expressing requirements and mechanisms for classifying requirements, are light on
approaches to help us invent, decide, and design.

The iterative and incremental nature of Agile development approaches distributes the event
of deciding throughout the development lifecycle and out to more team members than other
more traditional approaches. This makes understanding how we decide and design
requirements even more critical. For this reason User Centered Design is used as
foundation for a number of the design techniques discussed here.

The User Centered Design Process Isn’t

Just as it’s important to understand that Agile Software Development describes a class of
methodologies and not a specific one, User Centered Design describes a class of design
approaches — not a specific design approach.

The term User Centered System Design was first used in Norman & Draper’s 1986 book of
the same name. The book brought together a collection of papers on human computer
interaction design and emphasized the common theme of leveraging users to create the
most effective software design. Dropping the “"System” from the title left us with User
Centered Design and that name stuck.

The Missing Manifesto

The term “Agile Software Development” was invented fairly recently (2000) and is backed
by the brief but useful manifesto discussed earlier that gives everyone describing and
practicing Agile development approaches a common understanding to leverage. User
Centered Design doesn’t benefit from the same sort of manifesto. There seems to be a
common abstract understanding of what UCD means, but individual practitioners might
resolve the specifics differently.

In the absence of a specific manifesto, UCD approaches can be characterized as:

Design approaches that drive decisions about products and product
features from research and understanding about the actual or
prospective users of the product, their goals, and an understanding of
how they’ll use the product to meet their goals.

Various specific UCD approaches have arisen over the years; Carrol & Rosson’s Scenario-
Driven Design, Holzblatt & Beyer’s Contextual Design, Constantine & Lockwood’s Usage-
Centered Design, Cooper’s Goal Directed Design, and many others. With an emphasis
placed on specific design approaches described by each of these authors, it's made it hard
to arrive at a clear understanding of what the common ground is for User Centered Design
approaches.

Jesse James’ Generalization

In The Elements of User Experience (2004), Jesse James Garret deviates from other
author’s tacks of giving a specific approach to User Centered Design and describes a useful
model for looking at the general activities done in UCD. He describes a model divided into
five planes where each plane represents a scope of design concern. For each plane general
types of activities are suggested along with some suggestions on when activities in one
plane might occur relative to activities in another plane.

Jeff Patton, jpatton@thoughtworks.com 49

Bringing User-Centered Design Practices into Agile Development Projects

Let’s take a closer look at the planes of this model, shown in figure 2.1.

Specific
’

SESAFEE

L7

SHESES T

=

Sl el vrE

4

idetded 2 General

Figure 2.1 Jesse James Garrett's Elements of User Experience

The Surface Plane

As its name suggests the surface plane describes the surface of the software, its specific
user interface. This means everything we see and click on in the user interface, its color,
exact placement, the fonts and size of text used, etc. We'd use visual design techniques to
describe the surface of our software. For example a well designed ecommerce website page
would be pleasant to look at and make it easy to see the items I'm interested in and the
information about them that helps me make a buying decision.

The Skeleton Plane

The skeleton lies just below the surface. The skeleton describes roughly the layout of the
software - the placement of buttons, menu bars, form elements, lists of information etc.. A
skeleton might be visually represented as a wire-frame user interface drawing. An
interaction designer might build this wire-frame by arranging the elements in the user
interface to optimally support the tasks that will be executed by the applications users. A
page for eCommerce website would likely place the item or items I'm looking for at the
center of the page, and provide on each page a way to view elements in a shopping cart, or
search for other items. The skeleton describes the consistent useful placement of all these
page elements.

The Structure Plane

The skeletal user interface exists in some overall structure. While the skeleton would
describe placement of elements in the screen, the structure would describe navigation from
one screen to another. An interaction designer or information architect might create

Jeff Patton, jpatton@thoughtworks.com 50

Bringing User-Centered Design Practices into Agile Development Projects

structure to arrange functions and information in the software to best support the activities
the users will be engaged in. For example moving smoothly from shopping to checkout in
our ecommerce site is the responsibility of good structural design.

The Scope Plane

While the structure might describe how we navigate from feature to feature, on the scope
plane we describe what those features might be and how these features fit together. In our
ecommerce website we know that we need to show items and allow their purchase. We
might also decide it's important to save previous customer addresses we’ve shipped orders
to. These are scope decisions.

The Strategy Plane

In the strategy plane we’ll look at the goals for the organization paying for the software to
be built. We'll then look at the prospective users of the software and their goals when using
the software. Having a good understanding of all these goals allows us to determine what
features are in scope. For our ecommerce site we might come to understand that we're
selling an item that is a one-time purchase. We expect users will spend time making a
buying decision then, upon deciding, quickly purchase the item. Since we don’t expect
them to come back for another, saving a previous customer addresses may in fact not be a
feature we'll need.

Move from General to Specific

The model divides concerns into five planes from general to specific. Under that is the
implication that we’ll resolve general stuff before we resolve specific stuff because the
specific stuff is based on the general stuff. Strategic choices inform scope. Scope choices
inform software structure. Structure choices inform each screen or page’s skeleton. The
skeleton provides the foundation for the visual design. At each plane, specific User
Centered Design approaches might offer specific thoughts and techniques for dealing with
that plane’s concerns.

After introducing the model Garret appropriately advises that the activities and decision
made for each plane not be resolved before the next plane’s activities begin. In practice
work will be going on in several different planes simultaneously. Garret does advise not
finishing work on one plane before work done in its preceding plane’s work is complete. For
example fixing scope on the software before strategic goals for the software were
understood would be a bad idea. Or fixing the navigation structure without knowledge of
the features the software will have might yield bad results.

General to Specific Planes and Snhow to Eskimos

Moving from general to specific is a common approach used in traditional requirements
approaches. The three layers of requirements commonly referred to by requirements
engineers are:

B Business Requirements,
B User Requirements, and
B System Requirements

We can see that Business Requirements maps pretty cleanly to Garrett’s Strategy plane.
The Scope plane maps to what we might call User Requirements. But when we reach
System Requirements, Garrett uses three Planes; Structure, Skeleton, and Surface to divide
up design decisions around the physical appearance and behavior of software.

Jeff Patton, jpatton@thoughtworks.com 51

Bringing User-Centered Design Practices into Agile Development Projects

There’s a linguistic myth that Eskimos have hundreds of words for snow [ref Pullmans book
“The Great Eskimo Vocabulary Hoax”] because they are around it enough and concerned
with it enough to have different concepts and names for different varieties of snow.
Although the old myth may or may not be true, the concept here is what’s important. If
your primary focus is on a particular area, you’ll richen up the vocabulary you use to discuss
that area.

Garrett’s model is on user experience, so it's understandable there are more planes in his
model in the area of describing the system than in a traditional requirements model. In fact
your organization may use some sort of progression for moving through its requirements.
Take note of how many layers it has and in what particular areas. You may find the areas
where there are more layers point to the areas of biggest concern.

The important concept here is that that when deciding what specifically to build, there are
dependent layers of decisions that move from more general to more specific.

UCD Specialists

I emphasize User Centered Design techniques as a foundation for designing requirements.
This doesn’t imply that you need to delegate this work to a UCD specialist, rather that it is
important to understand the nature of these decisions and that everyone internalize user
centered design thinking into the way they think about requirements.

That said, bringing in trained UCD specialists can be incredibly valuable. It's important to
understand that like doctors, UCD people do tend to specialize. I'll generalize UCD people
into three common categories, Interaction Designers, Visual Designers, and Usability
Engineers. While all of these specialist practitioners are concerned with the entire process
of design, they each have specific emphasis and expertise.

Interaction Designers tend to focus on the “what to build” issues.
You'll find them with more to offer around the Strategy, Scope, and
Structure layers of the design. Don't expect them to be the best at
building detailed user interface prototypes or leading extensive
usability lab tests. Do expect them to conduct research on users and
their needs and make strong substantiated recommendations on what
software might best address those needs.

Visual Designers tend to focus on the “how it looks and feels” issues.
You'll find them with more to offer on the Structure, Skeleton, and
Surface layers of the design. Don’t expect them to lead user research
efforts or to conduct rigorous usability tests. Do expect them to
translate functional requirement decisions into detailed and effective
user interface design suggestions.

Usability Engineers tend to focus on the “is the software working
effectively for users” issues. You'll find them most effective at
validation of design at various stages of completeness. Don’t expect
them to lead user research or develop beautiful user interface
prototypes. Do expect them to lead usability tests to validate that
prototyped or built software works effectively for the target user
constituencies. Do expect them to make detailed recommendations
for improvement to the software based on these tests.

Jeff Patton, jpatton@thoughtworks.com 52

Bringing User-Centered Design Practices into Agile Development Projects

It’s neither accurate nor fair to generalize all UCD people into these categories, but that
hasn’t seemed to stop me. When encountering a UCD specialist you might find that they
contain one or all of these three emphases. However, I tend to find that one are of concern
is dominant in their expertise and approach.

Plan is a Synonym for Design

At this point you might be starting to see some similarities between Garrett’s model and the
Agile Development Model. When looking at the Agile development lifecycle we see lots of
plans made at varying degrees of detail. The closer we get to actually building features, the
more specific the plans get. Similarly, in Garrett’s model, the closer we get to the surface
plane the more specific the information gets. The various levels of Agile planning start to
mirror the various levels of design concern in Garrett’s model. If we understand plan to be
a synonym for design, then there might be something going on here.

Jeff Patton, jpatton@thoughtworks.com 53

Bringing User-Centered Design Practices into Agile Development Projects

Notes

: Thought\orks:
The Agile Concept of "Test First” Isn't . *

About Testing, It's About Designing

O Test First Development refers to the practice developers engage in

where they automate unit tests before writing code that allows those
tests to pass

o Writing these tests first forces developers to think about how the code
will be used and what it must do prior to writing it

o Agile developers often say: "How do I know I've written the correct code
if I don't have a running test to prove it?”

O Models built by user centered design practitioners perform the same
role as developer tests

0 Business goals help validate our choices of user constituencies to support
o User models help validate the work practice we choose to support

o Work practice models help validate the features we choose to design and
implement

o How could we know we've chosen the correct features without business
goals, user models, and work practice models?

40

ThoughtWorks:

Tne art of heavy lifting™

Merging Ux Design Dependencies
With an Agile Development Lifecycle

B, abstract

"’/'/design &\\j
e plan /

" Iterative Feature
Development

[evaluate)
)

_
— = -
/ /
~__ | ~_) /
> features - -
. .
| —

41

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Revisiting the Agile Development
Lifecycle

ThoughtWorks:

The art of heavy lifting:

Products & Projects . abstract
Model Strategy & Scope

/" design &
\ plan

.

7 ~ Incremental Release -
— Segment Scope, Model Structure

" Iterative Feature

S Development pa—
(design & Refine Structure, é evaluate)
__plan Design Skeleton & Surface .
(\ &0 @ ? U :
— | —

42

Jeff Patton, jpatton@thoughtworks.com

55

Bringing User-Centered Design Practices into Agile Development Projects

Common Concepts In Agile Development and User

Centered Design
Looking at both these models, a couple common concepts emerge.

Moving from Abstract to Detail

Both the Agile and Elements models move from a high level of abstraction to a lower or
more detailed level of abstraction.

Using the Agile Development model I'm ultimately concerned with developing features, but I
get there by planning iterations, and I get there by planning releases, and I get there by
chartering a project.

Using Garrett’s User Experience model, I'm ultimately concerned with describing an
effective user interface, but I get there by understanding page structure, and I get there by
understanding navigation structure, and I get there by understanding the scope of tasks
and features supported, and I ultimately get there by understanding the goals of the
organization building the product and the people who will use it.

Both models give useful names to these layers of abstraction: feature, iteration, release,
project; and surface, skeleton, structure, scope, strategy. The names and the concerns
they represent help us constrain our thinking to what matters at the particular level of detail
we're concerned with at the moment.

Decision Dependencies

It may be immediately obvious that there are dependencies between these named levels of
abstraction. The decisions made at a high level of abstraction directly affect the options I
have and the decisions I make at the next level of abstraction.

In the Agile Development model, the features I choose for a product are a function of the
goals for the product. The features in a particular iteration are chosen from the features
chosen for a release.

In the User Experience Model, the navigation of the user interface of the software is a
function of the features chosen for the software. The general layout, or skeleton, of a
particular page of the software is a function of the features that page must support and the
navigation structure of the software. The specific visual design of the page is a function of
the skeleton of that page.

Evaluation & Decision Dependency

When working with software, there’s a tendency to progress directly to the lowest, most
concrete level of abstraction - the specific user interface for the specific feature we’d like to
start building now. That’s not by itself a bad thing. But, it's critical that when we make a
decision on a more detailed plane, we must validate that decision with those made on the
higher level of abstraction planes. That process might go a bit like this:

Here’s the way | think this screen should look for the software.

What features or activities does this user interface support?

Does this user interface support this feature or user activity well?

Is this feature or activity important to our target users of the application?

Are both these target users and these features or activities the ones we want to support to earn
the best return on our software development investment?

Jeff Patton, jpatton@thoughtworks.com 56

Bringing User-Centered Design Practices into Agile Development Projects

It's easy to see that if we don’t have information about our financial goals, the users we
intend to support, and their activities that even a simple level of validation is difficult.
Without that information, it’s impossible to say if a particular design decision is indeed good
or bad. Yet, on most software projects individuals are often expected to make such
evaluations on the fly without a good understanding of the decisions made at higher levels
of abstraction. How do they manage that? They guess. OK, I guess that they guess. 1
know I do.

Guessing isn't entirely bad. In fact I'm a pretty good guesser. The difficult part comes
when I forget later why I made a particular guess. Or when someone else working
alongside me makes different guesses. This is often how design arguments occur. The next
time you observe a couple team members arguing a design decision, instead of discussing
the merits of one decision over another, try moving up an abstraction level and discussing
their reasons for making that decision. You'll observe very quickly the dependency between
these abstract levels of understanding and decisions we make at each.

Differences
In spite of their similarities, these two models emphasize different things.

The Agile Development model emphasizes the cyclic nature of development and the
dependencies higher level cycles have on the lower level cycles they're composed of.

The User Experience Model emphasizes the dependency of information acquired and
decisions made at higher levels of abstraction on the information acquired and decisions
made at lower levels of abstraction.

The Agile model is about process.
The User Experience model is about design decisions.

Since we can’t engage in a process of building software without making some decisions
about specifically what to build, we’'ll need to contend with both models.

Waterfall Head

There’s a misconception that we might use UCD techniques or other requirements elicitation
techniques on Agile projects by first doing requirements stuff, then engaging the Agile
software development to do what it does. That is; we'll use the user experience model first
to create our design, then slice it into features to build using an Agile incremental
development process.

There’s a misconception that we that we might decide initially what features to include in
software, build the software roughly, then have a user interface designer "make it pretty” as
the product nears completion. That is; do the scope setting part of the user experience
design work first, slice it into features to build using Agile incremental development
processes, then have developers guess at best structure, skeleton, and surface design with
the intent of correcting those decisions later.

Both of these strategies, while they may work in many contexts, are symptoms of
“waterfall” thinking. By waterfall I'm referring to the general approach referred to as
waterfall development where all work of a particular type is done in its own phase:
requirements, then design, then development, then test. Royce [ref], the person first
describing the waterfall approach, never intended for the phases to be isolated - for the
decisions made in a design phase to not be informed by information learned in a
development phase for instance.

Jeff Patton, jpatton@thoughtworks.com 57

Bringing User-Centered Design Practices into Agile Development Projects

In an Agile context where we have the explicit goal to defer design decisions and then learn
by evaluating our work in progress, both strategies are especially risky.

Fixing the scope early in a project strips out much of the purpose and power of evaluation at
the end of feature development, iterative development, and incremental release.

Deferring user interface decisions till late strips away the ability for actual users to evaluate
the suitability and the quality of the software for their day-to-day use. Not being able to
place software in front of actually users for their evaluation strips away an important layer
of feedback, and an important opportunity for change and adaptation.

To really leverage these two models and their ideas well, lopping them into pieces and
sequencing them waterfall style isn't going to work. We'll need to weave them together into
something better. Something that allows us to constantly make effective design and
requirements decisions based on the continuous evaluation found in the Agile lifecycle.

Weaving the Requirements and Design Process into Agile
Software Development

If we lay these two models side by side, we can start to get a little guidance on how we
might begin to weave these two lines of thought together.

Recalling the cyclic model for Agile Software Development, planning and design happens
inside of every cycle. Design decision making happens continuously, not all at once at the
beginning. It's threaded throughout the lifecycle. Removing the design and plan thread
from the Agile lifecycle would unravel it. The challenge now becomes what sorts of design
decisions to make, and when. If we lay the Agile Development model side by side with
Garrett’s Elements Model, we'll begin to get some direction on specifically what and when.

ey
/(Dev_ilcip/\ﬁJ}/_T_\ Specific
{3;’3 Feature /‘\/\:’&_E.—/ A
XQ Design > \(%L\ SIS TEE
T~ " (_Evaluate > |
\ - TN
T Iteration ¢/ M~
z ey T ﬁ
TR T |
e / CEvaluate >\ SHE/E T
T~
.]
Incremental Evaluate N é
“ Plan Release j
/ : SIS E
Product/Project Charter __gmdUCtl Pro_'| ect I
Plan fE—
\ // =
- Seqoe

L J
General

SISPLSEEY

Figure 3.1 - Side by side Agile and UCD Models

Jeff Patton, jpatton@thoughtworks.com 58

Bringing User-Centered Design Practices into Agile Development Projects

What to Design and Plan, When

For the Product and Project

We'll need some sort of project charter to start. The Element’s models Strategy and Scope
planes help inform us a bit here. Understanding strategy will help us work through how the
software can earn some return for its builders, what user constituencies it should support to
do so, and what sorts of features it should have to appeal to and be useful for those user
constituencies.

Project chartering is about Strategy and Scope.

For the Incremental Release

We'll need some sort of release plan that lets us understand what software we’ll be building
over time and some rough idea of the effort it will take to build it. A rough idea of scope is
important here, especially the most important scope to meet the strategy goals of the
project. To give rough estimates on development time, it may be important to understand
the shape of the software a bit - how many screens might it have, roughly what sorts of
activities will each screen support. Understand that Structure may help us guess at
complexity and estimate effort to build.

Incremental release planning is about Scope and Structure.

For Iterative Feature Development

To plan iterations and deliver more precise estimates, well need a better understanding of
the specific user interface of the software, more specifically how it looks and behaves in use.
We'll need details about the Structure, Skeleton, and Surface of our software.

Iterative feature development is about Structure, Skeleton, and Surface.

Evaluating Up

As we evaluate finished features we need to be concerned that the finished software
behaves as we'd predicted it would when we initially designed it. We’ll look closely at the
Structure, Skeleton, and Surface to make changes to those based on our evaluation of
these features.

As we evaluate finished iterations of features, we’ll begin to see a better representation of
how the features work together. We’'ll look more closely at the Structure and Features and
make changes to those based on the evaluation of the group of features.

As we evaluate finished releases, we'll better see how large groups of features coordinate to
support specific users. We can determine if we're supporting users well enough to earn the
return we expected on our software. We'll look closely at the Scope and Strategy and make
changes to those based on the evaluation of the release.

Merging the Models into an Agile Requirements Model
If we flip and merge these two models we might end up with something a bit like this.

Jeff Patton, jpatton@thoughtworks.com 59

Bringing User-Centered Design Practices into Agile Development Projects

N

abstract

Products & Projects
Strategy & Scope

=

evaluate

design &
plan

Incremental Release

Scope & Structure .

evaluate

plan %
l Iterative Feature I
Development

: Structure,
Skeleton, & Surface evaluate
plan
5 [T fetal
feature v

The Planes

Planes in this Agile Requirements Model correspond with both an Agile Development
Lifecycle, and an element of design and requirements concern. The levels are arranged
from abstract to detailed.

Arrows Point the Way:

Think of this chart as a simple board game. Start your token in the upper left circle to
design and plan for a project. Notice that you can move down the planning and design
stack until you reach the feature level, then you can start to move up the evaluation stack.
From any circle in the evaluation stack, you can circle back to design and plan in that same
plane. The circles and arrows give us an idea of the dependencies involved when designing
and documenting requirements and planning our Agile project. While there are always
exceptions, focusing on the design, planning, and evaluation concerns at the right
abstraction level works pretty well.

Jeff Patton, jpatton@thoughtworks.com 60

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Project Inception & Planning

Business Stakeholder Interviews

‘ BusinessiGoalModeling;
Financial Modeling
User Interviews
User Observation
/
=

UserModeling|

Competitive Analysis
Other Research?

Task Analysis
liaskiModeling .
Activity Modeling

llask=Centricikeature/Story Backiog

jiaskeCentrcReleasePlanning

Product Envisioning using High Level Scenarios &
Storyboards

44

Thought\Vorks'
Model Users Using A Technique Appropriate For
Your Product, Team, And Available Information

Q There are many ways to understand users, and depending on the product
being designed different approaches offer different advantages

O Build a user model to function as a design target for task support and user
interface decisions

O Examples of user models include

o Actor, Goal List products for internal
users, enterprise

0 User Roles and Role Model
products

o User Profiles

0 User Personas
consumer products

0 The profiled actor)
o The personified role better design targets

QO User models illustrate the tension that exists between user goals and
business goals

45

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

Where Does User Research Happen?

4 Finding time for thorough user research is problematic in all software
development environments. Agile Development fixes nothing here

QO User research happens during initial project inception and planning

4 Perform enough user research to construct preliminary or provisional user
models

A Continue research throughout design and development of the product and
alter user models, and resulting design choices as necessary

QO Don't be afraid of the scarlet letter:
o leverage Assumptions when creating user models or other models
o label Assumptions as such

0 Asses ghe risk of each Assumption — what will be the impact if this assumption is
wrong?

o Create plans to continue research to replace Assumptions with research
U You are not your user — or are you?
o FUBU

» Cooper’s persona hypothesis and provisional personas
% Pruitt & Adlin’s Assumption based personas

46

ThoughtWorks:

Tne art of heavy lifting™

Activity: Build a Simple User Role Model

O A User Role describes a goal-relationship a user has with the system

O A specific user may change roles as goals change

O To save time today, pretend you‘ve brainstormed user roles already and
use the role cards supplied

O Modeling steps:

1. Arrange the roles into a model by affinity: roles with similar goals that might use
our system in similar contexts are close together

2. Circle and label each cluster

3. Draw lines from role to role, or cluster to cluster, label as: relationships,
transitions, specializations

4. Annotate the model with other information relevant to those making specific
feature and priority choices

(15 minutes)

47

Notes

Additional
Reading:

* Norman, Why doing
user observation
first is wrong
(http://www.jnd.org/
dn.mss/why_doing_u
ser_obser.html)

Jeff Patton, jpatton@thoughtworks.com

62

Bringing User-Centered Design Practices into Agile Development Projects

A User Role is a Type of User in Pursuit of a Goal

The software we're building will have lots of features that support lots of user activities.

To choose the most appropriate activities we must know who will be using
our software and what their goals are.

Through research or anecdotal discussion we may have some ideas about the demographics
of our users, their ages, computer skills, likes, and dislikes. These details are important.

We may also have a strong sense of what people want to do with our software. Marketing
may furnish ideas for features. Customer support may furnish lists of common problems.
Observation of users might give us ideas about why they might use our software.
Interviews and collaboration with users will result in lists of goals and concerns.

Users goals frequently change while they’re using our software. For example someone
looking at an eCommerce website might start with a goal of getting product information
then change their goal to purchasing a product at the best price.

The demographics that matter most are the ones that would affect the design of our
software. The user goals that matter most are those user goals that our users might use
our software to meet.

Having a concise set of users and goals will help us identify the most appropriate product
features to help our users meet their goals.

Use a user role to describe a particular type of user in pursuit of a goal.
Build a concise list of user roles to describe the type of users and goals the
software you're building will address.

When choosing user role names, I prefer the form “thing-doer.” For example a person
looking at an information kiosk with the goal of finding a specific used CD might be a “Used
CD Finder.”

To add color and context, “decorate” user roles with adjectives. For instance some
shoppers might be in a hurry. Their goal is to find the item they’re looking for very quickly
then exit the store. This kind of person might be a “Hurried CD Finder”, or a “Harried
Hurried CD Finder. (I guess it’s best not to go too crazy.)

The names you give user roles are very important. The more concise and meaningful the
user role names, the less supporting documentation you'll need about them.

Choose names that describe the users goal with respect to the software you’re describing.
For example, in our kiosk system it might be inappropriate to describe a user as a CD-
buyer. While it’s true their ultimate goal may be to buy a CD, they’re using our system to
find it in the store. They’ll then physically locate it and carry the CD to a cashier to buy.
Referring to them as a CD-Finder more accurately describes their goal for using the kiosk.

Think of roles as hats an individual might change. A user might start in one role, change to
another as their goals or context changes. This distinguishes a user role from a user profile
or persona that more elaborately describes a user and their goals. A software system that
can be described with 3-5 personas might likely require 10-20 or more user roles.

When creating user roles, do add additional detail to the role such as demographic
information that has bearing on the design, usage context information, frequency that a

Jeff Patton, jpatton@thoughtworks.com 63

Bringing User-Centered Design Practices into Agile Development Projects

user in this role might use our software, and roles they might likely be changing from or
changing to. A pretty well documented role should fit on a 4” x 6” card, or a half sheet of
paper.

Larry Constantine & Lucy Lockwood describe user roles in Software for Use.

Additional Reading
= Constantine & Lockwood, Software for Use (Addison-Wesley, 1999)

Building a User Role Model

If your system is reasonably complex you'll have a number of good user role candidates,
enough that it may be hard to see common themes or interdependencies amount them.

[t’s important to understand how similar user roles relate to each other
and how user roles may be dependent on each other.

Discussion about user roles is always valuable, but discussion alone may leave some
participants with a different understanding than others. A common visible artifact helps
everyone see what they understand.

It's common to have several roles that share very similar goals but vary in terms of their
skills or usage context. It's important we understand those shared goals.

It’'s common for a user in one role to transition to another role. It's also common for a user
in one role to do work that another role depends on. It's important to understand these role
transitions and dependencies.

When you have a large landscape of interdependent user roles, downstream prioritization of
features for these roles can become difficult. Calling out most critical or focal roles to
support with the software is a valuable aid to priority setting.

A user role model arranges role cards spatially to cluster roles with
common goals, uses cluster arrangement and markup to show role
transition and dependence, and clearly calls out the most critical roles as
focal roles.

Building a user role model using flip chart paper and role names written on 3x5 cards is a
fast, simple, collaborative way to make sense of a large number of user roles. Start this
process with 3x5 cards, flip chart paper, markers, tape, post-it notes, and individually
wrapped pieces of candy.

The following text extracted from the Better Software article "An Elephant in the Room”
describes a collaborative role modeling process. The picks up after a user role
cardstorming.

Now that you've got the properly named roles, discuss each with the intent of agreeing on
the goals for each role. The name of the role may get you most of the way there. But,
make sure the role specifically states what this user’s goals are.

Be careful, the goals may not be what you expect. While management may believe that a
call center employee may have the goals of quickly and effectively answering as many calls
as possible, the person doing that job may more accurately have the goals to get through
the workday without incident, to look good to their boss, and to not have the software they
use make them feel stupid.

Jeff Patton, jpatton@thoughtworks.com 64

Bringing User-Centered Design Practices into Agile Development Projects

Write the goal or goals for each role in short statements on the 3x5 cards.

What do these people have to do with each other? Now we’ll start building a model
that helps show how user roles relate to each other. Grab a sheet of poster paper and lay it
on a large flat surface. Take up the role cards and start placing them on the poster paper in
a card arrangement that “feels” right. Don’t think to hard about it. Do try to cluster the
cards a bit. Do this by placing role cards similar to each other closer together or
overlapping. Place role cards dissimilar to each other far apart. The group should discuss
the arrangement till they decide it feels correct.

Using clear tape, fix the cards to the sheet of poster paper. This is the start of a good role
model.

Where did we put those pieces of candy? Each participant should grab a couple pieces.
Look at the arrangement of roles, and the goals of each. Of these roles, who is it most
important to satisfy for this software to be successful? Alternatively ask, which of these
roles will we be in big trouble with if we don’t satisfy them? Everyone choose a couple
roles, and vote for them by placing a piece of candy on that important role. You’'ll find, as
you place your candy votes, that not everyone agrees. That's always good information to
understand. Remove each piece of candy, and write a letter “F” prominently on the bottom
left corner of the card that the candy came from. Some cards my have 2, 3 or more “F”s.
These are our focal roles - the ones we need to focus on. The ones with more “F"s are
higher priority. Now eat the candy.

It's time for some creative annotation. Look more closely at the clusters. Why did they
cluster? What makes them similar? Use a pen to draw a circle around the cluster and label
it with what makes these roles similar. While doing this we often end up with labels like
“back office accounting,” “customers,” or “process oversight people.” Is there a common
goal that all these roles share? Label them with whatever makes sense to the team.

Now look at all the clusters. Do they relate to each other? Wherever possible draw a line
from one cluster to another and label that line. We often end up with line labels like “sends
work orders to,” “supervises,” or “tries to hide from.”

Look at the X and Y axis your role cards are placed on. There’s likely an unsaid reason that
some cards are higher than other cards and some cards lower, some cards to the left and
some to the right. I find it's common to place roles who have participation early in a
process on the top left, those with participation late in the process on the bottom right.
More senior people often end up at the top of the model. In that example the X axis might
approximate time, the Y axis seniority. Look for evidence that your roles are arranged on
axis lines, decide what they are, draw some lines on the model and label them.

Now it's time to add whatever other markings or notations to the model you want. Are
there other bits of information about these users that are important? Think of their work
environments. Are they hectic or peaceful? Think of their skill levels; are they highly
skilled, or just trying to get by? Think of their computer experience. Are they real geeks,
or do mice frighten them? Make notes on the model about these things and any other
interesting details you can think of.

Lastly, give this model a title that indicates the software the role model pertains to.
Something like "Widget Performance Analysis Role Model.”

This should now look like a kindergarten art project. Congratulate yourselves.
Optionally grab a blanket and a graham cracker and take a short nap. I'm only partly
joking. When everyone is fully engaged in the process, a huge amount of information is
being exchanged over the creation of this model. It can be pretty exhausting.

Jeff Patton, jpatton@thoughtworks.com 65

Bringing User-Centered Design Practices into Agile Development Projects

What you’ve built is a wildly creative variation of a user role model from Constantine &
Lockwood’s Usage-Centered Design. This form of role model has a few strong advantages,
and couple disadvantages.

You'll find that when you look at the role model it will remind you of the conversations you
had while creating it. It will be easier to recall the specific users you talked about and the
reasons behind the goals you noted down. The notations you invented will continue to
remind you of the relationships the roles have with each other. As time progresses knowing
who focal roles are will help you make critical decisions about the software, and how to
design and test it.

While there’s a lot of information packed in this role model, it’s very specific to those
present during its creation. You’'ll find that when you want to explain information about the
people using your software, you can’t simply direct them to the role model. You’'ll have to
stop and explain your kindergarten artwork to them. But, after some initial shock, they’ll
catch on.

Additional Reading

B Constantine & Lockwood, Software for Use (Addison-Wesley, 1999)
& Patton, An Elephant in the Room (Better Software,
http://www.abstractics.com/papers/ElephantInTheRoom.pdf)

Jeff Patton, jpatton@thoughtworks.com 66

Bringing User-Centered Design Practices into Agile Development Projects

A Good Product Design Balances
User Goals & Business Goals

ThoughtWorks:

The art of heavy lifting:

Notes

O Understanding both user and business goals helps us move forward
with understanding how we could release a product that could
satisfy both

Q There are financial advantages for releasing sooner and more
frequently

O Realizing those financial advantages often requires that user goals
are met

Now let’s talk about incremental release...

48

Incremental Release Increases Return on
Investment

ThoughtWorks:

Tne art of heavy lifting™

O Software begins to earn its return after delivery and while in use

O The sooner the software begins earning money:
o the sooner it can recoup its development costs,
o the higher the overall rate of return

O Increasing release frequency adds costs that must be taken into
account

o additional testing costs
o promotion costs
o delivery costs
o potential disruption to customers
O The impact on ROI for early release can be dramatic

O The impact on cash flow even more dramatic

49

Additional
Reading:

= Szuc & Gaffney, The
constant design
balance
(http://www.apogee
hk.com/articles/cons
tant_design_balance.
html

Jeff Patton, jpatton@thoughtworks.com

67

Bringing User-Centered Design Practices into Agile Development Projects

Evaluating Return on 4 Release Strategies
for the Same Product Features

ThoughtWorks:

The art of heavy lifting:

O All features delivered and in
use earn $300K monthly

o About half the features account
for $200K of this monthly return

O Features begin earning money
1 month after release

Q Each month of development
costs $100K

O Each release costs $100K

Return On Investment

6,000

5,000

4,000

3,000

2,000

Thousands of $s

1,000

Single Release
12 months
total cost: $1.3 M
total 2 year return: $3.6 M
net 2 year return: $2.3 M
Cash Investment: $1.3 M
Internal Rate of Return: 9.1%

(1,000)

(2,000)

Month

50

Evaluating Return on 4 Release Strategies
for the Same Product Features

ThoughtWorks:

Tne art of heavy lifting™

O All features delivered and in
use earn $300K monthly

0 About half the features account
for $200K of this monthly return

O Features begin earning money
1 month after release

Q Each month of development
costs $100K

QO Each release costs $100K

Semi Annual Release
6 month increments
total cost: $1.4 M
total 2 year return: $4.8 M
net 2 year return: $3.4 M
Cash Investment: $.7 M
Internal Rate of Return: 15.7%

Return On Investment
6,000
5,000
4,000
é 3,000
£ 200
E 1,000
_//P
- 1“4”””10“13“‘16‘”19‘”22H
(1,000)
(2,000)

Month

51

Notes

Jeff Patton, jpatton@thoughtworks.com

68

Bringing User-Centered Design Practices into Agile Development Projects

Evaluating Return on 4 Release Strategies
for the Same Product Features

ThoughtWorks:

The art of heavy lifting:

O All features delivered and in
use earn $300K monthly

o About half the features account
for $200K of this monthly return

O Features begin earning money
1 month after release

Q Each month of development
costs $100K

O Each release costs $100K

Return On Investment

6,000

5,000

4,000

3,000

2,000

Thousands of §s

1,000

Quarterly Release
3 month increments
total cost: $1.6 M
total 2 year return: $5.3 M
net 2 year return: $3.7 M
Cash Investment: $.44 M
Internal Rate of Return: 19.1%

(1,000)

(2,000)
Month

52

Evaluating Return on 4 Release Strategies
for the Same Product Features

ThoughtWorks:

Tne art of heavy lifting™

O All features delivered and in
use earn $300K monthly

0 About half the features account
for $200K of this monthly return

O Features begin earning money
1 month after release

Q Each month of development
costs $100K

QO Each release costs $100K

Quarterly Release — drop the
last release
3 month increments
total cost: $1.2 M
total 2 year return: $4.9 M
net 2 year return: $3.7 M
Cash Investment: $.44 M
Internal Rate of Return: 20.4%

Return On Investment

6,000

5,000

4,000

3,000

2,000

Thousands of §s

1,000

|

1
(1,000)

(2,000)

Month

53

Notes

Jeff Patton, jpatton@thoughtworks.com

69

Bringing User-Centered Design Practices into Agile Development Projects

Continuing To Add Features
May Not Pay The Same Level Of Return

ThoughtWorks:

The art of heavy lifting:

Notes

Q Continue development for one

additional quarter Return On Investment

O Additional high value features

add $100K monthly increase to 6000

return 5,000

4,000

3,000 /v

2,000

Thousands of $s

1,000

Quarterly Release — continue A
with 5% release 14 0 13,16 19 22
3 month increments (1,000)

total cost: $2 M

total 2 year return: $6.2 M (2,000)

net 2 year return: $4.24 M

Month

Cash Investment: $.44 M
Internal Rate of Return: 19.0%

54

Software By Numbers & Project
Portfolios

ThoughtWorks:

The art of heavy lifting*

P, |
O Software by Numbers [Denne & Cleland-Huang]
: describes Incremental Funding Methodology [IFM]

0 Goal to reduce necessary cash outlay

0 Make projects self-funding

Software
by Numbers

o Increase return on investment

O SBN Tools:
o http://dactyl.cti.depaul.edu/ifm/default.htm

O SBN introduces the concept of Minimal Marketable
Feature — MMF - the smallest sized feature that
would have marketable value

O SBN simple financial models provide guidance on
evaluating multiple projects in a portfolio

55

Additional
Reading:

Software by
Numbers website:
http://dactyl.cti.depa
ul.edu/ifm/default.ht
m

Cohn, Project
Economics
presentation:
http://www.mountai
ngoatsoftware.com/p
res/SDBPO5_ProjectE
conomics.pdf

Tockey, Return on
Software:
Maximizing the
Return on Your
Software
Investment
(Addison-Wesley,
2005)

Jeff Patton, jpatton@thoughtworks.com

70

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Building & Evaluating Complete
Releases Helps Reduce Risk

QProve general architectural approach
OValidate domain model

QPerform user acceptance testing

oShowing users complete workflow lets them effectively evaluate
and give feedback

OTest for performance
QOTest for load

ODeploy in target environment

56

ThoughtWorks:

ne art of heavy liftng™

To Capture Return On Investment,
the Delivered Product Must Be Used

O To plan an incremental release we must consider:
o Users
o User goals
o User’s current work practice, including current tools and processes

o Work practice after each product release

Now let’s talk about use...

57

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Software Is A Tool People Use To Help Meet
Goals, Tasks are the Actions They Perform

Q Goal:

o Reach the end of my life with my own teeth still
in my head

O Tasks:
o Clean teeth
o Visit a dentist
a Tools:
o Toothbrush
o Toothpaste
0 Running water
o Floss
o Dentist
O Understand goals, then tasks before
identifying tools

O Validate tools by performing tasks and
confirming goals are met

QO Defer detailed foo/ design decisions by
identifying and planning for task support

58

Notes

ThoughtWorks®

The art of heavy lifting.

Tasks & Activities to Describe What People Do

O Tasks have an objective that can be completed
0 Tasks decompose into smaller tasks

O Activities are used to describe a continuous goal, one that might use
many tasks, but may or may not be completed

0 “Read an email message” is a task, "manage email” is an activity

activity

59

ThoughtWorks

The art of heavy lifting™

Additional
Reading:

Norman, Human-
Centered Design
Considered
Harmful (August
2005,
http://www.jnd.org/
dn.mss/human-
centered.html)

Norman, Logic
Versus Usage: The
Case for Activity-
Centered Design
(2006,
http://www.jnd.org/
dn.mss/logic_versus
_usage_t.html)

Jeff Patton, jpatton@thoughtworks.com

72

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

Tasks Have A Goal Level

Plan releases

i om i using tasks at sea
7 goals to drive towards. level and a bit
below

ff")\\ Cloud or high summary level: very hi

mary lavel: long termn goals that 11l use various

themeelves ma:

Clam or low sub-function level: small details that make up a sub

60

ThoughtWorks:

Tne art of heavy lifting™

A Good User Story Models the Use of the System

Q Originally eXtreme Programming described a user story as a small amount
of text written on an index card to function as a reminder for a conversation
between developer and customer

a From Wikipedia:

“A user story is a software system requirement formulated as one or two sentences
in the everyday language of the user.”

Q The user story form credited to Rachel Davies in Cohn’s User Stories Applied
combines user, task, and goal:
As a [type of user]
I wantto [perform some task]
so that I can [achieve some goal]

As a harried shopper
Iwantto locate a CD in the store

so that I can purchase it quickly, leave, and continue
with my day.

61

Notes

Additional
Reading:

= Cohn, User Stories

Applied (Addison-
Wesley, 2004)

Jeff Patton, jpatton@thoughtworks.com

73

Bringing User-Centered Design Practices into Agile Development Projects

Identify And Plan Using User Tasks Now,
Defer Specific Feature Choices Till Later

Notes

ThoughtWorks:

The art of heavy lifting

Software Product

Agile User Story

a
a

a

Q

Understand Business & User Goals

Understand user’s tasks, and/or
the Ibusmess process that supports
goals

Select tasks to support with
software

Defer decisions for and designs of
specific features till later
o The often used phrase "latest

responsible moment" comes from
Lean Software Development:

“Put off decisions as long as you
can: to the latest responsible
moment. But it's the latest
responsible moment, not the "last
possible" moment. That wouldn't be
responsible.”

An Agile-style user story could
refer to a feature, or user, task,
and goal. Favor the latter.

62

A Task Workflow Model Organizes
Tasks to Represent Workflow

ThoughtWorks®

Tne art of heavy lifting

O To build a simple task workflow model:

o Draw a left to right axis representing time, a top to bottom axis labeled necessity

o Identify high level activities performed by users of the system and place them
above the time axis in the order that seems reasonable

o Within each activity, organize tasks in the order they’re most likely completed

0 Move tasks up and down depending on how likely they are to be performed in a
typical instance of use

Activity 1
| time >
Z | Task1 Task 2 Task 3 Task 4 Task 5
2
l Task 6 Task 7

63

Jeff Patton, jpatton@thoughtworks.com

74

Bringing User-Centered Design Practices into Agile Development Projects

Exercise: Build a Simple Task Model

ThoughtWorks:

The art of heavy |

Activity: using the pre-printed
activity and task cards, build
a simple task workflow
model for Barney’s

Activity 1
| time >
2 | Task 1 Task 2 Task 3 Task 4 Task 5
g
l Task 6 Task 7

64

Notes

Jeff Patton, jpatton@thoughtworks.com

75

Bringing User-Centered Design Practices into Agile Development Projects

Plan Incremental Releases as System Spans

When releasing software incremental as in Agile Development approaches it’s important that
each incremental release be useful to users. These means a useful set of their goals must
be met, and a sufficient number of tasks to support those goals must be implemented in the
software.

I[dentifying the tasks to support in an incremental software release can be

difficult.

Tasks are combined by users, often in an ad hoc manner, in order to meet their goals. To
construct a useful release of software we must support the most critical tasks necessary to
meet the user’s goals.

Once most critical tasks are supported, my can then seek to support the most frequently
used tasks that aren't critical.

The software release must span the full business process supporting not just one user, but
all users necessary to consider a full end-to-end business process to be demonstrable.

Business people and project stakeholders need some simple way to understand why some
features were included in a release and some weren’t. At times some features may seem to
have higher value while on closer inspection, less valued featured are actually the features
critical to the success of a user in pursuit of a goal.

Use a Span Plan task model to show a full business process and task
dependencies in order to construct successful incremental release plans.

A span plan leverages the idea of a system span described in Poppendiek and Poppendiek’s
Lean Software Development. User tasks arranged in order of dependency across the entire
span of the system helps a release planner quickly identify the tasks which are most critical
to support in early releases of the software.

The following text is an extract from Jeff Patton’s Better Software article "How You Slice it”
and gives a detailed description on how a span plan is constructed. Use user tasks as the
features called for in step 1.

Step 1: Collect Features

What does your software do? You should start with a user-centric list of features.
Depending on your situation, this might be trickier than it sounds.

My definition of a good feature is one that is expressed from a user’s perspective. For
example if I were building new software for a retail store, a feature might be “sell items at
point of sale” as opposed to “the system supports EAN-13 barcodes.” There’s a difference
there that I hope is not so subtle. The first feature describes an activity done by a person;
the second describes an attribute of an object. Look for features that start with or include
some action verb; that's a good sign. When describing your software it helps to indicate
how it will be used rather than how it might look or the details about its implementation.
Keeping your focus on the usefulness of the software at this stage helps to ensure that the
bits of the software released incrementally will be useful.

If you're not already describing features for your software this way, you may need to spend
a little time reframing your features in short user-centric statements.

Jeff Patton, jpatton@thoughtworks.com 76

Bringing User-Centered Design Practices into Agile Development Projects

Suppose I'm building some software for small retailers, I know that their business process
goes a bit like this:

create purchase order for vendor
receive shipment from vendor
create tags for received items
sell items

return and refund items

analyze sales

Notice these features start with an action verb. Gosh, they could almost be issued as direct
commands to a particular person. To support your model building you’'ll need the features
written on 3x5 cards, or on something that you can easily move around in your model. I've
found it's easy to merge features originating in a spreadsheet with a word processor
document that will print them on pre-cut 3x5 cards or business cards. This way the cards
are easy to read and work well with in a card modeling exercise.

Step 2: Annotate Features with A Few Important Details:
To help you model these features, let’s note three important details on them.

Who uses this feature?

Note on each feature the kind of user that uses it. When describing this feature, you likely
envisioned someone using it - who were they? You can identify them with a job title, a role
name, a persona, or in any other way most appropriate for your system. Constantine &
Lockwood’s Software for Use can coach you on roles. Alan Cooper’s The Inmates are
Running the Asylum gives an overview of personas.

Looking back at my set of retail store features, I know that the same person usually doesn’t
do all this stuff. I know that the work is divided between merchandise buyers, stock
receivers, customer consultants, and sales analysts. With these roles noted, these features
might now read:

create purchase order for vendor: merchandise buyer
receive shipment from vendor: stock receiver

create tags for received items: stock receiver

sell items: customer consultant

return and refund items: customer consultant
analyze sales: sales analyst

How often are these features used?

For each feature, note roughly how frequently you believe it will be used. You can use
simple notation like High, Medium, or Low. Or, be a little more precise with a continuum
like Hourly, Daily, Weekly, Monthly, Quarterly. With frequency noted, the preceding
features might read like this:

create PO for vendor: merchandise buyer, weekly
receive shipment from vendor: stock receiver, daily
create tags for received items: stock receiver, daily
sell items: customer consultant, hourly

return and refund items: customer consultant, daily
analyze sales: sales analyst, monthly

Jeff Patton, jpatton@thoughtworks.com 77

Bringing User-Centered Design Practices into Agile Development Projects

How valuable is this feature?

For each feature, estimate roughly its value to the purchasers of this system. If your
company has a good understanding of where ROI comes from on this system, this may not
be too hard - but for the rest of us, this is usually a subjective judgment. Using High,
Medium, and Low will work fine for our use today. The features may now contain this
information:

create PO for vendor: merchandise buyer, weekly, medium
receive shipment from vendor: stock receiver, daily, high
create tags for received items: stock receiver, daily, medium
sell items: customer consultant, hourly, high

return and refund items: customer consultant, daily, medium
analyze sales: sales analyst, monthly, high

Make adding these details a collaborative activity. Assuming you’ve got your features
written or otherwise printed on cards, spread those cards out on the table. Take turns
picking up cards and adding user, frequency, and value. If you've got a good mixed group,
you'll notice that some folks have strong opinions about some of these details. Some folks
may know a bit about the user and frequency, but nothing about value. You'll find with a
good mixed collaborative group, you’ll be able to quickly fill in all these details. You'll notice
lots of good discussion while doing it.

When writing your features on cards, it's good if the same information appears in the same
place all the time. This makes the cards easy to read when placed in the model. They
might start to look like playing cards in a game. That’s good. Because building the model
should feel a bit like you're playing a game. A feature card may look something like the
example below.

create pe for
vendor
(merchandise buver)

freguency, weekly
valve: medivm

Step 3: Build Your Incremental Release Plan

Set Up Model Axis:

To build this model, lay a few sheets of poster paper on a large worktable. This model is
generally longer than it is wide, so arrange sheets and tape them together to form a wide
poster.

Draw a horizontal line across the top of the page and label it usage sequence.

Draw a line on the left side of the page from top to bottom and label it criticality. Label
the top endpoint of this line always used, the bottom endpoint seldom used.

Jeff Patton, jpatton@thoughtworks.com 78

Bringing User-Centered Design Practices into Agile Development Projects

criticality

seidom
cod

Place Features in Your Model

You now need to place features in the model according to usage sequence and criticality.
So let’s say a little more about these two axis:

On sequence:

Using the features we wrote for out for our retail software above, we’ve already listed them
in the order the features will be used. PO creation happens before shipments are received
from the vendor. Tags are created before the items are put on the shelf and sold. Sales
are analyzed after some items are sold. That’'s what I mean by usage sequence.

But, it may not seem so cut and dried. If we really look at a retail store we might find
buyers on the phone placing orders at the same time receiving clerks are in the back room
receiving and tagging. If the store’s open, we hope customers will be on the retail floor
happily buying our products and customer consultants will be ringing them up. It looks like
all these features are being used simultaneously and indeed they are. So when sequencing
them in your model, arrange them in the order that seems logical when explaining to others
the business process. If you explain the business process starting with the selling part,
that’s OK, put that feature first. One reason we want this model is to help us tell stories
about our software; so arrange them in an order that makes it easy to tell stories.

Distribute the cards among participants. Then, everyone, as orderly as possible, place the
cards in your model by usage sequence from left to right, features used early on the left,
later on the right. Go ahead and overlap features that might happen at about the same
point in time. If you get confused about the position of a feature, try to just look at the
feature and its immediate neighbors. It's sometimes easier to answer the question “does
this happen before that” than to try to take everything into account at once.

LEAge FEQLERCE

wied ermate pa for recaive shipmest ereate tags for sall itams raler
[FLr From vander recaived itemr (redrimmar cansultant} (Ramles analyst]
{merhandion burar) L ek rece iver] rmm—————— fragesncy” manihy
= freguency, ki Fragoamy dak Freguindy: o whke rerturn and
= vl e vl Aigh medm raFend ftams
= : - (Caifdergr canpuitan el
o Froguency ety
e Kt s
T
ok
L 3

If we arrange our features written on cards in sequence, it might look a bit like this.

On criticality:

Jeff Patton, jpatton@thoughtworks.com 79

Bringing User-Centered Design Practices into Agile Development Projects

For each of these features, how critical to our business is it that someone actually uses
them? Let’s look at our retail features: When working with the business people who know
how their business is run, they inform us that often orders are placed with vendors
informally over the phone without a purchase order being created in the system. So in
those cases, we'll receive the items into inventory without a PO. This is generally the
exception, but it happens and should be supported. So our feature: create PO for vendor
is important to our system and is used frequently, but not a/lways.

All together, adjust vertical positioning of your cards based on how critical they are to the
business process. If the feature is always done place it on the top. If the feature is often
done, but not always, place it a bit below the top line. If it's seldom done, place it toward
the bottom. If you've got enough people working on the model simultaneously, this may
start to look like a game of twister. You'll observe people moving cards down to see them
adjusted back up by someone else. Use these conflicting card movements to elicit
discussions on why someone might believe a particular feature is more critical than another.

Lsdge SEQLERCE
" *
alwoys "
sied receive thiprent sell items
Frem vandar (eaeriaanr cansulfani}
(et Aaceiner) Frigeamy Aaury
r":\. Fragory dask s Aigh
= ke dapt
o
o -
= eraate pu for eraate tags far b o analyre saler
5 vamaler received rlemr refand itemr (raaler anadyst]
Jmerhandions byl (rmgck recsives] (esandner canuiraar) ey ST
Frosuancy. widd Fragoandy il ihi Froquency Sy b Al
it e LT Farhut' Snclcoss
reldam
wied 4

If we adjust our features for criticality, our model might look a bit like this.

Add swim lanes:

If your system is anything like those I've worked on, you’'ll have knitted together a few
distinct processes done by different people at different times. When you look across your
model from left to right, you might start to see logical breaks in the workflow. Remember
how for each feature you noted a type of user, or role that primarily used the feature?
You'll find that these breaks often occur when there’s a role change Reading left to right
you'll see some features are used by one role; then you'll see a change to another role and
some features used by this next role.

As a group discuss where you see breaks or pauses in the business process. Then draw
vertical swim lanes on this model and label them for each process. If you're finding it hard
to draw swim lanes, discuss why. Is there really only one type of user doing one process?
Or, do we have different user’s features mixed up in the same timeline?

After drawing swim lanes in your model, it might look a bit like this:

usage sequience

v

baying receiving ' selfing analyzing
I 1
al wngs A |
use; recefve shipment sell itoms
frem vender (eustamer consultant)
(stack recedver) frequency: Sourly
_a\ Frequency: daily vatie: Bigh
—_ valve: high
[}
L
+ ervate pe for ercate fogs for retare and aonalyze sales
5 vendor received ioms refond items (sakes analyst)
{(merchandise buyer) {etack receiver) (eustamer consultant) frequency: montily
Frequency, weekly Frequency: daiy valve: Frequency: dally valve: high
vafug: medivm medium Valve: medivm
seldom
used

Jeff Patton, jpatton@thoughtworks.com 80

Bringing User-Centered Design Practices into Agile Development Projects

What Is This Model Telling Us?

Interesting so far, but what are you learning about how to build releases for your software?
Let’s take a closer look.

Mark the System Span:

The first system span is the smallest set of features necessary to be minimally useful in a
business context. It turns out that the very top row on our model is the first, most minimal
system span. This will be true of your model too. For our simple list of features it turns out
to be receiving items, and selling items.

Draw a line under the top row of your model to indicate the features that make up this first
system span. Your model may look a bit like the example below:

usage seguerce

baying rocoiving =oiiing onoiyzing

(etgck recefver)

Systermn Span%

ereate pe for emeate fogs for returm and anaiyze sales
vendor received items (sajes apalyst)

criticality

) Frequency; Wﬁeﬂf’}" freéueﬂcy‘ daify vialve: :“;’rzquency‘ dfm};“‘ vale: high ’

value: medivm medium Valve: medivm

v

Notice how in the example we’ve not built any functionality to support the merchandise
buyer or the sales analyst. Ultimately we know that supporting those folks with some
functionality is important. But, since the work they’re doing doesn’t always happen, we can
defer it at least for a little while.

After drawing the line in your model are there roles and business processes that are
omitted? Talk about them as a group.

The span isn’t really enough to release to our customers, why should I worry
about building that first?

The span represents the most concise set of features that tunnel through the system’s
functionality from end to end - the bare bones minimum anyone could legitimately do and
use the system. Getting this part completed and released, even if only to internal test
environments, forces resolution of both the functional and technical framework of your
application. Your testers will be able to see if the application hangs coherently together.
Your architects will be able to validate the tech-stack functions as expected, and may begin
working on load tests to validate scalability. The team can begin to relax knowing that from
here on in, they're adding more features to a system that can be released and likely used.

I first encountered the term span in Lean Software Development. There the Poppendieks
describe building a spanning application as an important first step to building a larger
application. If the span can be built quickly, it makes it easier for a larger team or several
teams to contribute to the application.

If you're developing commercial software, the span may not be sufficient for a release to
the marketplace — unless you don’t yet have competitors. If you're writing software for use
internally in an organization, the functionality contained within the span may or may not be
sufficient for your organization to begin to use the software. The important things to note

Jeff Patton, jpatton@thoughtworks.com 81

Bringing User-Centered Design Practices into Agile Development Projects

are that the span should always be your first release, but it need not be the first public
release of your software.

OK, so building a first span is a good idea, how long will it take?

If you've got developers participating in this exercise, and you should, this is a good time
for them to start giving development estimates for each feature. Write the time estimates
in days or weeks directly on the cards. Very rough estimates will do fine. Developers may
find that seeing the “big picture” helps them estimate a little better. Mike Cohn’s User
Stories Applied offers lots of guidance on quick estimation techniques.

Once you have rough estimates add up the estimates for the features above the line
marking the first span. This is how long it should take to build.

Mark Subsequent Spanning Releases:

The plan may now be “sliced” horizontally into spanning releases. Well, sort of horizontally.
Choose features below the marked first span that group together logically. Choose enough
features such that the estimated elapsed development days fit within an appropriate release
date. Lines drawn through the plan make it start to look like haphazard layer cake. This
may cause you to draw lines that wander up and down to catch and miss features while
traversing the model from left to right.

At this point in the collaborative activity, the business people responsible for the release
should step forward. Let those folks use their best judgment to decide what features best
make up a release. If you're an observer, ask questions so you understand why one feature
finds its way into an earlier release than another.

Responsible business people continue to slice the cake into appropriate releases. When
choosing features to fill a release, you may want to consider the features with the highest
value first. You may also want to consider building up support for a particular type of user
or business process. In a release, you might try completing all the valuable features in one
of your business process swim lanes. This will result in some funny shaped lines stretching
from left to right.

After slicing the model into releases you should be able to see how many releases it will
take to build this software, and what might be contained in each release.

Now let’s get real. Most software worth writing has more than six features. Depending on
the granularity of your features, you'll likely have dozens. With a reasonable number of
features your plan will likely look like the photo at the beginning of this article. Notice in
this span plan that software spans several business processes. Notice how the releases cut
from left to right in some funny jagged lines that catch the features the planner intended for
each release.

Jeff Patton, jpatton@thoughtworks.com 82

Bringing User-Centered Design Practices into Agile Development Projects

What Just Happened Here?

You've just built a span plan. Because you’ve arranged features in sequential order you
understand what features depend on each other. Because you've arranged them by
criticality, the important features are emphasized at the top of the plan. Because you've
drawn in swim lanes by business process, you know roughly the functionality that supports
each major business process in your software. Because you’ve arranged features this way,
you've found the minimal feature span that lets you get your system up and running, end to
end as soon as possible. All this information is in one convenient picture. With a little
common sense, we should be able to carve off the smallest possible releases that will still be
useful to the people who ultimately receive them.

Additional Reading

& Patton, How You Slice It (Better Software,
http://www.abstractics.com/papers/HowYouSlicelt.pdf)

Jeff Patton, jpatton@thoughtworks.com 83

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

Part 2 Agile Tips For Ux Practitioners

6. Spread out research: perform enough research early to make
provisional decisions. Leverage assumption. Replace risky
assumptions with research

7. Understand models as tests, or validation for subsequent
decisions: models we build based on our research and
assumptions act as tests just as developer’s unit tests act as tests

8. Align user goals with business goals: this user’s goals are
important to us because...?

9. Emphasize user goals and tasks — not features: leverage
good user story format to do so

10. Defer feature design: to the latest responsible moment

65

Notes

Jeff Patton, jpatton@thoughtworks.com

84

Bringing User-Centered Design Practices into Agile Development Projects

Part 3: Building & Validation

In part three we'll dive headfirst into a simulated Agile Development cycle. You'll need to
understand just a couple quick concepts before you can plan your product releases. Then,
given that plan you’ll use paper prototyping to build the first release of the software you've
planned.

Jeff Patton, jpatton@thoughtworks.com

85

Bringing User-Centered Design Practices into Agile Development Projects

Notes
Thought\orks:
Product Incremental Release
Planning
Continue User Research As Needed . o —
\ incremental Release Planning —] —
Defining Interaction Contexts & Navigation " — "
User Scenario Writing
UI Storyboarding
Low Fidelity UI Prototyping I 1
Lightweight Usability Testing
Before planning a release, you need to understand scaling...
69
Thought\\orks: EEFNRTITRE
- - Reading:
Considering Feature Scale - Patton, Finish On
Time By Managing
O Given a task like “swing from tree,” a variety of feature design solutions exist Scale (StickyMinds
to support the task. These features can vary widely in scale column,

www.abstractics.com

O Managing scale appropriately is an important part of managing scope
/papers)

d When initially planning the delivery of a set of features, the scale of each
feature must be considered

O Much of detail scale management happens during design and development

o Close to the time the functionality is needed

o In the context of other features, time constraints,
development capacity, and other projects in the portfolio

low cost moderate cost high cost o~

Jeff Patton, jpatton@thoughtworks.com 86

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

In Software Design & Development We Sometimes
Take An Overly Simplistic View of Features

O What if we built a car the same way we often build software?

O Omitting necessary features may make the product useless — this
makes prioritization difficult

O Scaling all features to highest level increases cost

Q To control the cost of the car, we scale the features back to
economical levels

Feature List

= Engine

= Transmission /T\

= Tires |

= Suspension = [i

= Breaks (CF‘D

= Steering wheel vy

= Driver's seat TN\ _/

" I’V TOYOTA Meicedes-Benz

71

ThoughtWorks:

Tne art of heavy lifting™

Look Closely At Characteristics of a
Feature To Manage Its Scale

O Necessity: what minimal characteristics are necessary for this feature?

o For our car a minimal engine and transmission are necessary — along with a
number of other features.

Q Flexibility: what would make this feature more useful in more situations?

o For our car, optional all-wheel-drive would make it more useful for me to take on
camping trips. A hatchback might make it easier for me to load bigger stuff into
the back.

Q Safety: what would make this feature safer for me to use?

o For our car adding seat belts and making the brakes anti-locking would make the
car safer.

Q Comfort, Luxury, and Performance: what would make this feature
more desirable to use?

o I'd really like automatic climate control, the seats to be leather, and a bigger V6
engine.

QO Each product feature may have some portion of each of these four
categories

72

Jeff Patton, jpatton@thoughtworks.com

87

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Necessity:
support the tasks the users must perform to be successful

Q If software doesn't support necessary tasks, it simply can't be used

O A feature or set of features that minimally support each required
task meets necessity guidelines

While planning a software release, features to support some tasks
may not be necessary if the user can easily use a tool they already
have or some other manual process to work around the absence
of the feature in your software.

73

ThoughtWorks:

Tne art of heavy lifting™

Flexibility:
support alternative ways of completing tasks or tasks that are
less frequently performed

O Adding flexibility to a system adds alternative ways of performing
tasks or support for less frequently performed tasks

O Sophisticated users can leverage, and often demand more flexibility

O Complex business processes often demand more flexibility

To estimate the level of flexibility needed, look to the
sophistication of the users using the software and to the
complexity of the work being performed. Expert users
appreciate more flexibility. Complex business processes require
more flexibility.

74

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Safety:
help users perform their work without errors and protect the
interests of the business paying for the system

O Adding safety to a system protects the users from making mistakes
with features such as data validation, or process visibility

Q Safety characteristics of a feature often protect the interest of the
business paying for the software by implementing business rules

O Sophisticated users can work without safety features, while novices
often need them

O Complex business rules often demand more safety features

To estimate the level of safety needed consider the expertise of the
users of the system and the number of rules the business would
like to see enforced. Novice users may need more safety

features. Complex business processes may require more safety
rules.

75

ThoughtWorks:

Tne art of heavy lifting™

Comfort, Performance, and Luxury:
allow users to do their work more easily, complete their work
faster, and enjoy their work more

O Adding comfort, performance, and luxury features allows your users to:
o complete their work more easily
o complete their work more quickly
o enjoy their work more

O Often the return on software investment can be increased by adding these types of
features

O Comfort features benefit frequent, long term use of the software
0 Sophisticated users can benefit from performance features
O Those making buying decisions often look at luxury features

To estimate the amount of comfort, performance, and luxury necessary consider
the affects of these features on the sales, adoption, and use of the software.
Look more closely at the financial drivers when estimating. Opportunities

for increasing return on investment drive additions to comfort, performance,
and luxury features.

76

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

When Planning a Software Release, Thin Software
Prospective Features Using the Same Guidelines

O When planning a software release, start with tasks that users will
perform

O Add in tasks that provide flexibility as necessary
O Add in tasks that provide safety as necessary

O Add in tasks that provide comfort, luxury, and performance as it
benefits return on software investment

O Each task you choose to support in a release will have some amount
of these 4 qualities:

o Estimate the amount of flexibility, safety, comfort, performance, and
luxury you believe the feature solution of a task might need

o Use this information to adjust your design and development estimates

77

ThoughtWorks:

Tne art of heavy lifting™

Using Our Task Model to Identify Features
that Span Our Business Process

0 The Task Model we've built identifies the major activities and tasks
that span the business functionality

O A successful software release must support all necessary activities in
the business process

Q This type of task model is referred to as a Span Plan since it helps
identify the spans of functionality

smallest list of tasks

o to support users =
Activity 1 smallest span
| time >
Z | Task 1 Task 2 Task 3 Task 4 Task 5
4
2
l Task 6 Task 7

78

Jeff Patton, jpatton@thoughtworks.com

90

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Identify Releases In a Span Plan By
Slicing Horizontally

activity 1 activity 2 |activity 3 activity 4
time >
necessary e E e
q
XY T B G T T |
optional 1 [Isecondrelepse LD .-
T |] ([=
g L il |
.§ =1 (. Ea
| I [| [|
more gmm third release

optional — |
4 Choose coherent groups of features that consider the span of business
functionality and user activities.
O Support all necessary activities with the first release
Q Improve activity support with subsequent releases

79

ThoughtWorks:

Tne art of heavy lifting:

Sliced Span Plans

Q Slices often take irregular shapes to ensure coherent groups of product
features

80

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Use Feature Thinning Guidelines to
Reduce the Size of a Release

O The topmost row of the span could be the first, smallest release

0 By minimizing a release we can realize financial and risk reduction
benefits earlier

O The top span represents the minimal tasks users need to accomplish
to reach their goals. How can we split these “high level stories” into
smallest parts?

o Can the feature(s) to support a task have reduced safety?

o Can the feature(s) to reduce a task have less comfort, performance, and
luxury?

o Are there optional tasks that can be supported in a subsequent release?

o For necessary tasks, look at the steps — or subtasks that make up the
task. Can any of those steps be made optional?

o0 Move cards around the model, or split cards into multiple cards to defer
task support, or specific feature characteristics till later releases

81

ThoughtWorks:

The art of heavy lifting*

Splitting Span Plan Tasks

activity 1 activity 2 |activity 3 activity 4
time >
necessary || [)| [JCJC 1 [(IO
less & [[| [[N]
optional = | [[[
g [S R (R 7
5 | 1 1.
more * E E E
optional |:|

O Consider tasks more optional
O Split tasks into optional parts

82

Jeff Patton, jpatton@thoughtworks.com

Bringing User-Centered Design Practices into Agile Development Projects

Manage Feature Scale

The ideal feature may not be

I hope you're reading this book because you ultimately want to see great software built and
in use by your customers. So in spite of all the words in this book dedicated to deciding
what to build and evaluating if it was the right thing to build, really the important thing is
actually building something.

When we do the work necessary to understand our business goals, our users and their
goals, and the work we need to support in the system we’re building, we can often clearly
see an ideal solution.

That ideal solution is compelling. It becomes a bit of a holy grail to quest for. We often set
out in out on our quest to build this ideal product by dividing it up into the ideal features
that make up this ideal product. We then estimate the cost to design and develop each
feature. However, the ideal solution may not be within our budget to construct. It may
take more time than we have to meet our release and return on investment goals. It may
take more development hours than is economical to spend for a particular feature. Or
simply placing so much focus on designing and building one particular ideal feature may
distract us from looking at the other features we need. This concentration on a single
feature pulls our focus from evaluating the product as a whole and all the features the
product will need to be successful. This can be risky.

Designing and building each feature in its ideal form may be unacceptably
time consuming, expensive, or risky.
Let’s dig a little deeper into this problem.

Of course we want the best product possible. When using incremental development a
common approach is to start with a list of features for a product and estimate the time to
build each feature based on high level design and assumptions about how that feature
might look and behave. Given those development estimates, plus some suitable time for
contingency to account for unknown risks, we as a team can then come up with how many
of these features we can place in a release of our software. That sounds reasonable, right?

This is where things go bad.

Prioritizing features doesn’t always work well

The business paying for the software might like to see the release in a certain amount of
time. Let's say 6 months. When we add up the development times plus the contingency for
the features it might add up to 12 months. Ouch.

One obvious solution might be to prioritize features and simply not build some of them.
Then we'd still get an ideal product with the most important ideal features, right? But,
prioritization can be surprisingly difficult. Considering the detail that we have, all the
features look necessary. Prioritizing one over the other might be easy in some cases, but
hopelessly problematic in others.

Let take an example far away from software. Let’s say we're building a car. Now I know
cars aren’t designed and built like software, but suppose for a minute they were. Suppose
in front of you was an empty parking space, and a few months from now you’d like to see
car there. Let’s start by building a backlog of the features you’d include in your car:

B Engine

Jeff Patton, jpatton@thoughtworks.com 93

Bringing User-Centered Design Practices into Agile Development Projects

Transmission
Tires
Suspension
Breaks
Steering wheel
Drivers seat

I'll stop there, since there are lots of basic features that describe a car, I think you can
imagine enough for us to continue. A feature list like this lacks detail. Now if I were to ask
you to prioritize a list like this, could you? Is the engine more important than the
transmission? Is the steering wheel more important than the breaks? Aren’t questions like
this just silly?

Often questions about the priority of features in scope seem just as silly, especially for a
new product that needs a large set of features constructed to be viable. Yet, it's common to
ask business stakeholders to perform this sort of prioritization.

De-scoping features isn’t always possible

Assume we were able to prioritize features sufficiently to come up with a release we could
live with. The interesting thing about prioritizing features for a product release is that the
attention isn’t on the top of the list — because these those are the features we know will
make it in the release. The emphasis is on the bottom of the list; the cutoff area between
features that make it and features that won’t. To get an acceptable set of features for a
release, lots of heated discussion generally happens around these features. It's common for
people making those decisions to push hard on the development estimates for those
features.

Assuming software development goes as it often does, toward the end of development time
we find that we're a little behind schedule. To meet our schedule we’ll need to de-scope a
few of these features. Conversations at this time usually don’t go well. The features left in
scope are all necessary. Decision makers are often left with the problem described when
prioritizing car features. They may be asked to de-scope either the steering wheel or the
brakes... or more likely if it's near the end of the list, the headlights or the brake lights.
These aren’t just hard choices to make, those making them know that the resulting product
may likely be unacceptable.

This is when business stakeholders usually call for more overtime, offer bonuses, and
silently make a vow to consider off-shoring next time — or bringing it back on-shore if this
was already the next time.

Features have a hidden dial

Let’s go back to our car example. We all know that there’s a huge variance in the cost of
cars. Yet they usually have the same general features: engines, transmissions, tires, etc.
So what makes one car more expensive than another?

To understand that we need to look closely at the specifications of those features - the
features of the features. Bigger engines cost more money than smaller engines. Automatic
transmissions cost more than standard transmissions. Large, hard, low-profile, rated tires
cost more than skinny, soft ones that slide in the rain. So, while a car always needs an
engine, transmission, and tires, the choices the manufacturer makes about those things, as
well as all the other features of the car, drastically affect the cost of that car.

Jeff Patton, jpatton@thoughtworks.com 94

Bringing User-Centered Design Practices into Agile Development Projects

I'll call that hidden dial in a feature the scale of that feature. For any feature in a car, or in
software, we can scale it up, or scale it back. For the features in our car or in our software
we can control cost by scaling the feature back.

To control the cost of building all the necessary features in a software
release, scale the features back to economical levels.

It's not all about money

While scaling back a feature may allow us to buy it for less, it’s not just about the cost of
the feature. Let’s revisit our story above where we were nearing the end of our release, but
unfortunately we're running behind schedule. Let’s assume we knew about feature scale, so
we scaled the features appropriately before estimated the time and money to build them.
We've built most of the features already, except for the last few. Knowing now about the
hidden scale dial we now have two choices: de-scoping some of the remaining features, or
further reducing the scale of the remaining features.

Since it's the near the end of the release, there’s only a few features left. If we reduce the
scale of those features to a level that will allow us to deliver on time, we may be back in the
same situation we were before - delivering a product that may be unacceptable. Using our
car example again, we may be forced to duct tape flashlights to the hood to use as head
lights, and cover the windows clear plastic sheeting instead of glass. This looks bad on a
car — especially an otherwise high quality car like a Mercedes Benz. Sadly, software often
ends up in this position with many well designed and built features and few that look like a
clumsy afterthought.

Happily we're designing and building software, not cars. One of the options we have to
manage this risk is to scale the features to a very low level early in the development cycle
then gradually add scale back to the features. As the design and development of the
software release proceeds, the software scale continuously improves. When we near the
end of the release development cycle, and development is a little behind we now have most
features up to full scale. We need not substantially reduce the scale of some features, but
only slightly reduce the scale of a few features. We’d hope that slight scale reduction was
not easily perceived by users, or the business paying for the software.

Let’s look back at our car and pretend its metal was as malleable as software. If I knew at
the end of the release I needed a pretty good car, and I took on this strategy, I might
choose to scale the features down and get the car built as quickly as possible. My first car
might have a tiny engine, usable brakes, and a steering wheel, but the driver seat was a
lawn chair bolted to the floor. I could drive it down the street without a roof or doors, so
left those off. I was able to build this sort of car with all the basic features I needed rather
quickly, and now I have a lot of time left.

One at a time I begin pulling and replacing some features, and adding in some I could
initially do without. The engine gets bigger, the car gets doors and a roof, the lawn-chair
initially gets replaced with a simple fabric seat, then towards the end of the release replaced
again with a leather seat. At release time I have a pretty good car. There’s still more I
wished I could have added, but all the features I needed are present, and I haven't really
skimped on any of them. This strategy of scaling features up over time seemed to work.

Reduce scale of features aggressively early in a software release
development cycle, then build up scale as the release design and
development continues.

Jeff Patton, jpatton@thoughtworks.com 95

Bringing User-Centered Design Practices into Agile Development Projects

Given that there’s some good reasons to reduce the scale of a feature both when planning a
software release, and while designing and constructing the release, let’s look closer at how
we might thin the scale a of a particular software feature. Feature Thinning Guidelines
describe four basic areas to look at when making choices to thin the scale of a feature.

Feature Thinning Guidelines

Feature thinning guidelines help make decisions for thinning product features to make them
lighter, simpler, and faster to develop. Use feature thinning guidelines to thin proposed
features during release planning, and choosing and designing specific work to iteratively
develop during release development.

These feature thinning guidelines are based on Gerard Meszaros Storyotype approach for
splitting bloated XP stories.

Whether you‘re using eXtreme Programming and user stories or not, the four categories
identified by Gerard offer a simple way to thin features or stories. Looking at a proposed
product feature, these guidelines offer a simple way to divide up characteristics of the
feature. These characteristics identify perforations in the feature that make it easy to divide
up. I've taken liberty with the names of the characteristics so that I could more easily
remember and apply them. Hopefully you can to.

Let’s continue using our car metaphor. Imagine you're making choices about scale on each
particular feature of a car. The characteristics of the feature we'll look at are:

B Necessity: what minimal characteristics are necessary for this feature? For our car
a minimal engine and transmission are necessary - along with a number of other
features.

B Flexibility: what would make this feature more useful in more situations? For our

car, optional all wheel drive would make it more useful for me to take on camping

trips. A hatchback might make it easier for me to load bigger stuff into the back.

Safety: what would make this feature safer for me to use? For our car making the

brakes anti-locking would make the car safer.

B Comfort, Luxury, and Performance: what would make this feature more desirable
to use? I'd really like automatic climate control, the seats to be leather, and a bigger
V6 engine.

If we were buying and using a car, we all need the necessities. However, we all may have
different opinions on what's more important between flexibility, safety, and comfort, luxury,
or performance. We want varying degrees of all those things up to what we can afford. We
expect each feature of the car to have at least the necessities and some of all the other
categories.

Some characteristics don’t easily fit into one category. Is all-wheel drive a safety
characteristic or a flexibility characteristic? I guess it depends if it’s raining hard outside, or
if I choose to drive the car off road to go camping.

Now let’s look at a high level software feature and apply some thinning guidelines. Let's
choose a feature in software we likely all use. We'll express the need for this feature as a
user task - since the feature we build needs to support that user task.

Send an email message

We’'ll look at how these four guidelines might apply to the feature or features that support
this task, and how these guidelines might apply while planning and estimating a release,
and while iteratively designing and building the software.

Jeff Patton, jpatton@thoughtworks.com 96

Bringing User-Centered Design Practices into Agile Development Projects

Necessity

To identify what’s necessary look at the user of the software and the simplest possible use.
Start by looking at the task the user intends to perform. Write a simple user scenario or
task case to understand the steps of usage. Identify only the absolutely necessary steps

that allow the task to be considered successful. A feature that supports necessity supports
only those necessary steps.

Using our “send an email message” task, success for me is to get a message sent.

The steps I as a user might likely follow would be to:
Indicate I'd like to send a message

Indicate who I'd like to send the message to
. Write the message

Indicate I'd like the message sent now.

ESISES

I've really cut back here. Notice I didn't enter a subject line, send it to multiple people,
carbon copy anyone, or add any attachments. It’s likely I wouldn’t choose to buy a product
that did only those things. But, if the product couldn’t do those basic things, well, that
would just be silly.

If we described a “send an email message” feature as having just those things, it would
have only the necessities.

For any given software feature, we can thin it to include only its necessities.

When planning and estimating a release: make sure each feature has
support for at least the necessities.

When designing and incrementally building your software: initially
introduce a new feature into the system using a necessity-only feature or
user story.

Flexibility

To identify specific options that make the feature more flexible look back at the user and
possible use of the feature. For the task the user is performing, write a simple user
scenario or task case. For each step in that task, ask what your user might alternatively
do, or do in addition to the actions performed in that step. In use case writing these might
be considered our alternative steps. A feature that supports some degree of flexibility
supports some or all of these alternative uses.

Using our “send an email message” task, I might optionally type a subject line — actually I
usually do that, but I guess if you press me, it’s not really a necessity. I might optionally
send the message to many people. I might optionally carbon copy or blind copy others. I
might send an attachment, save it to my sent folder, or forward someone else’s message.

Adding support for some or all these "might dos” adds flexibility to the feature.

When planning and estimating a release: consider how much flexibility
the feature might likely need and estimate development time to include
that assumption about flexibility.

Jeff Patton, jpatton@thoughtworks.com 97

Bringing User-Centered Design Practices into Agile Development Projects

When designing and incrementally building: split away flexibility from
features to add later as individual flexibility features or user stories.

Safety

To identify specific options that make the feature more safe look again to the user and use.
For the task the user is performing write a simple user scenario or task case. For each
step consider things that could go wrong. How might our user enter data incorrectly and
cause trouble downstream? What does the business paying for the software want to make
sure the user doesn’t do? Characteristics that help the user by validating or correcting
input, or by applying business rules that restrict or block some actions are considered safety
features. A feature that contains this sort of input validation, correction, or business rule
applications has some amount of safety built in.

Using our “send an email message” task, if I typed in an improperly formatted email
address, sending the message would fail. I might appreciate it if the email address were
validated. In some corporations large attachments are considered unacceptable because
they bloat email storage, and consume lots of bandwidth. If the system were to stop me
from attaching a large file, the business paying for this software might appreciate that.
Adding these sorts of characteristics to the “send an email message” feature adds safety.
Features in our software often have some number of safety characteristics.

When planning and estimating a release: consider how much safety the
feature might likely need and estimate development time to include that
assumption about safety.

When designing and incrementally building: split away safety from
features to add later as individual safety features or user stories.

Comfort, Performance, and Luxury

To identify specific options that make the feature more pleasant to use look again to the
user and use. For the task the user is performing write a simple user scenario or task
case. For each step consider things that make the step easier to accomplish, faster to
accomplish, or more fun to accomplish. You may have to base your decisions on what'’s
easier, faster, or more fun based on what the feature already looks like, or what's
considered the bare necessity feature. It helps to look at similar or competitive products to
identify these areas for improvement.

Using our “send an email message” task, I really hate typing the same email addresses over
and over. It would be nice if the system auto-completed addresses I'd used before. I'm a
rotten speller, and my grammar aint so good. Could the system check my spelling and
grammar in the email message and subject line? Can I insert amusing smiley icons into the
message? Adding these sorts of characteristics to the “send an email message” feature
adds comfort, performance, and luxury. I’ll like this product much better if it has some of
these things.

When planning and estimating a release: consider how much comfort,
performance, and luxury a feature might need. Estimate development
time to include that assumption about comfort, performance, and luxury.

Jeff Patton, jpatton@thoughtworks.com 98

Bringing User-Centered Design Practices into Agile Development Projects

When designing and incrementally building: split away comfort,
performance, and luxury from features to add later as individual features
Or user stories.

Considering Scale When Planning and Estimating a Release

If we follow a progression of understanding our business goals, then our users and their
goals, then the work they do to meet their goals, we'll begin to see the “product shaped
hole” that allows us to design a tool that helps users meet their goals. The design of that
tool starts with understanding usage and the necessary tasks our users need to perform
with our prospective tool.

When planning a software release, start with tasks that users will perform.

For each of these tasks we must consider necessity, flexibility, safety, and comfort,
performance or luxury. When building a release plan, leverage a business goal model, a
user model, and a task model. Look to those business goals, and the focal or most
important users and tasks. All tasks will be supported by features that have some measure
of each of these four characteristics. It's easy to assume that focal tasks performed by focal
users in direct support of a business goal require not only necessities be met, but a high
degree of flexibility, safety, and comfort, performance, or luxury as well.

At early planning stages it's not necessary to discuss specific feature decisions or resolve
specific feature design, rather use these guidelines to scale estimates accordingly.

Look at the four guidelines to both determine if each task should be supported in the
release or not, and to estimate the amount of time each feature might require to design and
develop.

Think about necessity

If our software doesn’t support the necessary tasks, it simply can’t be used. However, it's
likely your users have been meeting their goals for a while using inadequate software tools,
paper and a pen, or some other approach.

While planning a software release, features to support some tasks may not
be necessary if the user can easily use a tool they already have or some
other manual process to work around the absence of the feature in your
software.

When planning a release, think about which features really are necessary, and what could
be worked around.

Think about flexibility

Flexibility, or the usage alternatives we provide in the software, can be tricky. Some
variations may be frequently used by some types of users, infrequently by others. You may
develop suspicions about the amount of flexibility needed in your features by the
sophistication level of your user constituencies: sophisticated users generally take
advantage of more options when performing tasks.

Complex business processes generally allow for more variation. Building features to support
those sorts of business processes will likely require more flexibility. However, if the

Jeff Patton, jpatton@thoughtworks.com 99

Bringing User-Centered Design Practices into Agile Development Projects

business paying for the development of the software is also the business using the software,
they’d do well to question complex business processes. Could those processes be made
simpler?

To estimate the level of flexibility needed, look to the sophistication of
the users using the software and to the complexity of the work being
performed. Expert users appreciate more flexibility. Complex business
processes require more flexibility.

When planning a release on a feature by feature basis, consider how much flexibility might
be necessary based on the sophistication level of the users and the complexity of the work.

Think about safety

When considering safety think first about the user constituencies using the software. Novice
users may likely follow the rules about inputting or manipulating information, but may have
trouble learning them or be more error prone. They’ll need a fair bit of friendly validation.
Users working very fast may also make mistakes — but they’ll need input validation that
doesn’t stop them from moving fast.

Consider the rules of the business paying for the software. What do they want to ensure
the user does or doesn’t do? What would happen if they enforced less?

To estimate the level of safety needed consider the expertise of the users
of the system and the number of rules the business would like to see
enforced. Novice users may need more safety features. Complex business
processes may require more safety rules.

When planning a release, on a feature by feature basis, consider how much safety might be
necessary. Look at the sophistication level of your use audience. Look at the complexity of
business rules the business would like to be enforced. Ask “what would happen if we didn't
validate user input here?” and “"What would happen if we didn’t enforce these business
rules?” You may need less safety than you think.

Think about comfort, performance, and luxury

Start by thinking about the users of the system. What other tool choices do they have? If
this is a commercial application, what comfort, performance, and luxury features to
competitive applications have that they consider valuable? What is the sophistication level
of the user? Advanced users can better utilize feature characteristics that allow for faster
performance. Frequent users appreciate feature characteristics that make frequent use
more pleasant. Novice users appreciate feature characteristics that make the software
easier to learn.

Next consider the business paying for the software. If this is a commercial product, it may
be necessary to have features that rival competitors for the software to be viable in the
market place - whether your users really need them or not. If the organization earns more
money if users are more effective at their work, consider performance and luxury as a way
to increase return on investment as a result of increased efficiency.

For comfort, performance, and luxury features, always consider the person buying the
software separately from the person using the software. What features or feature
characteristics attract the attention and sway the opinion of a buyer? For large enterprise

Jeff Patton, jpatton@thoughtworks.com 100

Bringing User-Centered Design Practices into Agile Development Projects

class software, the buyer is often not the user. It may pay big dividends to your company
to enhance features attractive to buyers, although they may never touch the keyboard.

To estimate the amount of comfort, performance, and luxury necessary
consider the affects of these features on the sales, adoption, and use of the
software. Look more closely at the financial drivers when estimating.
Opportunities for increasing return on investment drive additions to
comfort, performance, and luxury.

When planning a release, tasks by task, consider where to best place comfort,
performance, and luxury to make the largest impact on the software’s return on investment.

Estimates at the release level become budgets

The estimates given against prospective features to support tasks will serve as development
time budgets during iterative design and development. For now, use these estimates to
size and plan releases that will be successful in the eyes of their target users and the
business paying for the development. As you begin to make specific design decisions for
the features to support users’ tasks, let the budget set limits for the amount of flexibility,
safety, and comfort, performance, or luxury you add.

Thinning and Building Up Features During Iterative Design
and Development

When we set out to build a software release, we make decisions to try and come up with a
set of features which will be both feasible to build in the time available, and make the
product as valuable as possible both economically to the business paying for the software
and functionally to the user constituencies who will use the software.

When we choose those features and make our plans, we do so without detailed knowledge
of exactly how each feature may ultimately look and behave in the software and exactly
how much time each feature may take to develop.

As we design and build more features we may discover better ways to build features,
opportunities for other high value features, or omissions of features we subsequently
understand may be critical.

While we're busy designing and building a software release, the world around us isn't
standing still. Competitors may release new software or features we must react to. We
may come to understand more about our users or our business that causes us to question
our feature choices. Other demands on our available design and development time may
reduce the time budget we have to complete a release.

Uncertainty about specific feature design and development time along
with high likelihood of change requires active management and
adaptation in the decisions we make about specific feature characteristics.

If we try to battle uncertainty by resolving more details about feature design before
planning the release, we risk delaying the beginning of that release. While we may be more
confident in our development estimates, we're certainly not ensured of their accuracy. In
fact they're still likely wrong. We may be tempted to reduce risk by padding development

Jeff Patton, jpatton@thoughtworks.com 101

Bringing User-Centered Design Practices into Agile Development Projects

times to a more comfortable level, which increases the time to delivery, the cost of the
product, and may substantially reduce the return on investment for the product.

If we proceed with feature design and development naively, we're likely to find ourselves
with a subset of our features built as we’d anticipated, or some other fraction of features as
we're faced to make the choice to de-scope or scale down. The result is often an incoherent
product where necessary features are either missing or designed and implemented poorly
relative to other features in the product.

An effective strategy for designing and developing during release is
implement all intended features scaled down to bare necessities, then
gradually adding flexibility, safety, comfort, performance, and luxury.

This design and development strategy has the effect of gradually bringing the software into
focus.

Software design and development is an art

When I was very younger I expected I'd be a graphic artist. I spent a lot of time drawing.
One of the mistakes I often made was to picture in my head what I wanted to draw and
then begin to draw it. I'd render my subject in fairly precise detail. If I were drawing a
dinosaur - which I often did when I was a kid, I might start with the head. A T-Rex head is
big and mouth full of sharp teeth which I'd take quite a bit of time drawing. As I moved on,
I'd eventually get to the neck, body, arms, legs, and tail. This is when I'd figured out I'd
got the proportions all wrong. The head was generally way too big for the body. The shape
of the whole dinosaur looked as though I was looking at it through a funhouse mirror. Then
my mom would call me to dinner and I didn't have time to fix or finish it. So in addition to
the odd shape, there were parts, like the head, in extreme detail, and other parts un-drawn
or with nearly no detail. This wasn't the scary dinosaur I was looking for.

When developing software iteratively, this is often one of the outcomes. Slightly misshaped
software with high quality of detail in some places, and lots of rough spots elsewhere.

Let’s go back to our budding artist. As I continued to draw, and got a little help, I learned
that artists often sketched out the basic shape of the thing they were drawing. They
resolved the positioning and proportions of elements on the page first. Painters often
created an under-painting or a preliminary painting that let them see the basic form, colors,
and contrast in the painting. Then the artist might proceed to work on different parts of the
painting, moving from one part to another, spending time where it seemed sensible, but
gradually working on the whole drawing as a single unit. A graphic artist with a deadline
might look to the important, or focal, parts of the work and put more time there. She
knows this was where the viewer’s eyes would spend more time. She could pace herself to
create the best work possible given the allotted time.

Software design and development works well when it follows the same strategy.

Jeff Patton, jpatton@thoughtworks.com 102

Bringing User-Centered Design Practices into Agile Development Projects

Mapping uncertainty to the software release

There’s a fairly obvious law that we often forget to accommodate. It's difficult to predict
outcomes and events in the distant future and easier to predict them in the near future.

Barry Boehm first described the Cone of Uncertainty to illustrate how uncertainty about
development estimates decreases over time. Steve McConnell later elaborated on this to
say that the same applies for requirements.

—Ii_ hx"""-.._

1 _""‘--_1

I

o

Q

L

3

uncertainty decreases over time

time >

The iterative development style of Agile development adapts to this uncertainty by not
focusing early on accurate estimates, since they likely won’t be, and not focusing too hard
on accurate requirements, since they likely won't be.

If we acknowledge and accommodate what looks like an obvious truth and map our feature
thinning guidelines to this we're able to come up with a useful strategy for thinning and
building back-up features during the time span of a single incremental release.

Jeff Patton, jpatton@thoughtworks.com 103

Bringing User-Centered Design Practices into Agile Development Projects

b
£
(7))
b

ertainty --p g
/

-
't

alf=+ Une

\ J

The shape of iterative release design and development

To effectively manage the design and development of features throughout a typical release
cycle we'll need to aggressively manage the scale of each feature. In the Agile development
approach of eXtreme Programming, we might consider the feature or features that support
each user task a user story. Built in an ideal form, or in a scaled down form we’d intended
for our release, they might be very big stories. We’'ll use our thinning guidelines to split
these big features or big stories into lots of smaller stories. These are the stories we’ll focus
on during the each iteration of development.

This ideal release design and development strategy breaks the release period in thirds — a
three trimester gestation period. Please excuse the bad metaphor.

Necessities: Starting the release development

Focus first on carving away all the necessities in each feature of the software. Use the first
part of the release cycle to complete the design and development of all these necessities. If
this is a new product and you’ve used a span plan to help plan this release, you’ll have
implemented the first system span. If this is a subsequent release, you’ll have implemented
some range of features that span the entire release’s functionality.

Alistair Cockburn describes this as a walking skeleton; although this term is often used to
indicate the design and implementation of basic architectural necessities. This walking
skeleton could be considered a functional walking skeleton in addition to an architectural
one.

There’s no need to split the features further at this point. When managing a feature
backlog, I may place a necessity feature into the first iteration, and then leave one
remaining feature for “all the rest” of the intended feature characteristics. You'll split these
later. There’s no need to predict how they need to split now.

Flexibility & Safety: Filling in

By a third of the way in to your release cycle, the end of the first trimester, you now have
the necessities completed for your release. You can see the general shape of your software.
You've implemented most of your basic domain objects. You’'ve implemented most of the
screens of your software and can now see the navigation structure clearly. With luck the
basic architecture of your software is complete. This is a good time to begin validating basic
interaction design using usability testing, and system performance and scalability using

Jeff Patton, jpatton@thoughtworks.com 104

Bringing User-Centered Design Practices into Agile Development Projects

functional testing and load testing. You've mitigated a lot of risk by doing this. Pat yourself
on the back.

Now go back through your features and carve out flexibility and safety additions to the
features you’ve implemented. Keep the pieces you carve out reasonably small. Don’t do
your carving all at once. You might carve an iteration or two ahead, but don't plan the
entire rest of your release.

The end game

By two-thirds of the way through, the second trimester, you're seeing a pretty solid
product. It may not be quite as sexy as you'd like, but it works well. You‘'ve been able to
validate the scalability and performance, and adapted to some unforeseen problems there.
You've been performing simple end-to-end usability testing and stumbled across some
features you’d overlooked. You also identified some changes to navigation that will make
things easier to use. Along the way you’'ve identified areas in the software where you can
significantly improve the users’ experience. If the software really had to release now, it
could, but it wouldn't be your best work.

If you have new features to implement, immediately carve off, design, and build necessities.
Then move through to flexibility and safety additions for those features.

Go back through all other features and carve off additions that will add comfort,
performance, and luxury. Now more than ever your business goals and user models will
give you guidance on where best to spend the remainder of your time. Look for additions
that benefit focal users performing focal tasks that directly support business goals.

As the release date nears, shift designers and developers into validation roles testing and
retesting the software for functional and usability errors.

Always releasable?

There’s a goal in eXtreme Programming that the software we’re designing and building be
always releasable. This goal is adopted by many projects working in an Agile manner.

You'll notice that the “trimester” strategy may not leave the software always releasable.
During the release’s first and second trimester the software wouldn’t normally be considered
viable. Unlike childbirth, these three cycles don't need to take 9 months. I've typically
practiced this pattern using a 45 to 90 day cycle. You can scale your cycle depending on
the complexity of your product. Let your release planning help guide the decisions about
what a viable product might be.

Thinning is a risk management strategy

No matter how you look at it, it often takes longer to split up a feature into little parts and
develop it a piece at a time. It often takes major rearranging or rewriting of existing
features to accommodate new flexibility and safety characteristics. Sometimes a comfort,
luxury, or performance feature may result in complete redesign of both user interface and
underlying code.

Thinning and building up allows deferring of design decisions when uncertainty is at its
lowest till later in the release cycle. It affords the earliest possible validation of the
functional scope of the release. It affords the earliest possible validation of underlying
architecture and domain objects. It affords early testing of usability, performance, and
scalability. It preserves time near the end of the release cycle to react and adapt to what
you learned from building the software, and what might have changed in the world around
you while you were building.

Jeff Patton, jpatton@thoughtworks.com 105

Bringing User-Centered Design Practices into Agile Development Projects

To better manage risk, use a thinning and building up strategy to
coordinate the ongoing design and development of features during a
release development cycle.

Jeff Patton, jpatton@thoughtworks.com 106

Bringing User-Centered Design Practices into Agile Development Projects

Before You Create A Release Plan, You Need To Know A
Bit About Your Development Approach

Notes

ThoughtWorks:

The art of heavy liftng

Q You'll be developing your product today using componentized paper
prototypes

O Your first released prototype will be built in 20 minutes of
development

O A successful release will span the entire business process supporting
all tasks you feel are necessities, then filling in with features to
support tasks that are optional

O Estimate your release based on how much you believe you can
complete in 20 minutes of prototyping

83

Use Span Planning & Feature Thinning
Guidelines to Plan Small Coherent Releases

ThoughtWorks:

Tne art of heavy lifting:

Activity:

Q Identify 2 candidate
releases for Barney’s

Q Thin your span plan using
feature thinning guidelines

Q As a group discuss what
sorts of features might
support each task, and if
and how they could be
thinned

Q You have 10 minutes

Q Thin support for tasks using the following guidelines:
o Necessity: is supporting this task necessary in this release?
o Flexibility: does supporting this task add flexible alternative ways of doing things?

o Safety: does supporting this feature add safety for the user or business paying for the
software?

o Comfort, Performance, and Luxury: does supportin?g these tasks make the software
easier to use, faster to use, more enjoyable to use?
84

Jeff Patton, jpatton@thoughtworks.com

107

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

Feature Design & Development

Continue User Research As Needed

Defining Interaction Contexts & —
Navigation

User Scenario Writing

UI Storyboarding

\ oW Fidelity ULiPrototyping

\ DightweightiUsability Tiesting

Detailed Visual Design

UI Guideline Creation & Ongoing
Maintenance

Heuristic Evaluation
Collaborative User Interface Inspection

85

rkse

Tne art of heavy lifting™

The Shape of a Typical Agile
Iteration

O Iteration Design & Planning

o Sufficient feature design and analysis completed to allow development time PN
estimation (design&

: . . plan
o Iteration kickoff meeting: 1 hour to %2 day " —

= High level goals for the iteration: “at the end of this iteration the software will..."”

= User story or feature introduction & estimation
O Feature Design & Development

o Features may or may not have most of their functional and user interface design
completed before iteration planning — the remainder is completed inside the RN
iteration (build /

o Constant collaboration occurs between development and those in an Agile e
Customer role

o Near the end of the iteration time box is a good time for testing how well features
work together — collaborative UI inspection is common at this time

QO End of Iteration Evaluation N 4

o Demonstrate and evaluate the product as it is today to stakeholders — this is a good y T
time for usability testing — adjust planned product scope in response (' evaluate /

o Evaluate progress on features against a release plan — adjust plan as necessary ——

o Reflect on the process used over the past iteration — should the process change to
improve quality of product and/or pace?

Notes

Jeff Patton, jpatton@thoughtworks.com

108

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

In Our Process Miniature, We'll
Combine Releases With Iterations

Please Don‘t Try This At Home

Develop >
C Test D
IRy

Product/Project

Product/Project Charter

88

ThoughtWorks:

Tne art of heavy lifting™

Paper Prototyping Basics

Qa Tools
o Card Stock (use for screen backgrounds and cut up for components)
o Index Cards (lined cards make great lists)
0 Scissors or Xacto knife
o Cello tape
0 Repositionable tape
o Pencils
o Sharp felt tip pens
o Transparency film (great to write on)
O Team approach
0 Someone direct traffic
0 Various people build components
0 Someone assemble the user interface from the components

0 Someﬁge continuously review what’s being assembled against your use case — will
it work?

89

Jeff Patton, jpatton@thoughtworks.com 109

Bringing User-Centered Design Practices into Agile Development Projects

. : : Thought\orks:
Activity: Build Your First Incremental . *

Release

QO Team approach
0 Someone direct traffic
o Various people build components
o0 Someone assemble the user interface from the components

0 Someone continuously review what’s being assembled against your use
case — will it work?

Q Refer to your span plan — try to complete feature support for all the
tasks in your first release

0 20 Minutes

91

ThoughtWorks:

Tne art of heavy lifting™

Preparing to Test Your Paper
Prototype

Q Identify test subjects
o Should match the characteristics and skills of your target user constituencies
o Actual end users or stand-ins
Q Identify tasks to test
O Assemble your test team
o facilitator
0 computer
o observers
4 Coach the test team on the testing personalities:
o flight attendant
0 sports caster
0 scientist
O Decide on test approach — single or paired subjects
O Setup your testing facility

92

Jeff Patton, jpatton@thoughtworks.com

110

Bringing User-Centered Design Practices into Agile Development Projects

ne art of heavy lifting.™

Run Your Usability Test

ThoughtWorks:

Q Facilitator introduces the team.

Q Facilitator introduces tasks to perform
and goals, then invites test participants to
“think out loud” and begin.

Q Facilitator plays sports-caster; keeps
subject talking, narrating when
necessary.

O Observers record data — use post-it notes
to make downstream analysis move
faster.

O When the test is complete observers may
ask test participants questions.

O Thank test participants.

O Consolidate data.

0 How many issues did you detect? Consider
issues as items you'd change.

9

3

Notes

Testing In Action

94

Additional
Reading:

= Patton, Test
Software Before
You Code
(StickyMinds column,
www.abstractics.com

/papers)

Jeff Patton, jpatton@thoughtworks.com

111

Bringing User-Centered Design Practices into Agile Development Projects

User Interface Paper Prototyping and Usability Testing

The following for short articles give simple step by step instructions for writing out the steps
of a simple user task, moving from that task to a simple user interface prototype, and then
testing that prototype. The final article discusses considerations when using user story
driven approaches to drive user interface design.

Task to Abstract Components, Step by Step

1. Start with a task or collection of tasks

In user interface design a proposed user of a product will attempt to meet his or her goals
by executing “tasks” using the product. For our purposes here, we’ll define a task as:

> a series of actions taken by a user of a product in pursuit of a goal

The name of a task should not necessarily imply a particular way of accomplishing that task.
For example if I have a goal to happily listen to the most recent Mike Doughty CD in my car,
I might walk into a music store to buy it. “"Buy a CD” is a task. It's easy to assume, given
the bit of context I just gave you, that it will be in a store with shelves of CDs and that I
might pay for the CD at a cash register operated by sales person at the music store. But,
given a different context, such as at home, the store could be an on-line store where the
mechanisms for finding and paying for a CD might be quite different.

Tasks contain other tasks

For example my “Buy a CD” task might contain the tasks: locate the CD I want in the store,
check the price of the CD, purchase the CD. And it doesn’t stop there. Each one of those
tasks may further break down into smaller tasks. The lower you go, the more you
decompose tasks into smaller tasks, the more you need to decide or assume about where
and exactly how the task will be accomplished.

Tasks have goal level

In Writing Effective Use Cases, Alistair Cockburn introduces a useful concept called goal
level. To explain goal level he uses an altitude metaphor with sea level falling in the middle
of the model. He also refers to sea level as “function” level. The test for a sea level goal is:
would I as someone engaged in this task expect to finish it in a single sitting, typically
without interrupting or setting aside the task to complete later. Sending an email message
might be such a task. Buying a CD might be such a task.

Jeff Patton, jpatton@thoughtworks.com 112

Bringing User-Centered Design Practices into Agile Development Projects

Cloud or high summary level: very high level ongoing goals that
may never be completely achieved but that I'll use summary level
goals to drive towards.

Kite or summary level: long term goals that I'll use various
functional level goals to achieve.

Sea or function level: tasks I'd reasonably expect to complete in a
single sitting.

Fish or sub-function: smaller tasks that by themselves may not
mean much, but stitched together allow me to reach a function level
goal.

Be < v O

Clam or low sub-function level: small details that make up a sub
function goal.

» For designing user interface start with tasks that are functional or sea level

It's important to note that goal level is a continuum - much like an analog dial for adjusting
volume on a stereo. The goal level dial may have five labeled settings but a particular task
can easily fall between two of those settings.

2. Write the sub-tasks, or steps that allow our user to

reach her goal

Select a candidate user, context of use, and functional task. The user selection is
important. Me stopping to buy a CD in the context of running errands may have different
steps than you choosing to buy a CD while surfing the web during a lunch break at work.

One important part of the context for us to proceed is the assumption that the context
includes some product that we’ll be designing. For our use here we'll assume the store I
stopped in contains a handy kiosk that allows me to find the physical location of CDs in the
store. The task we'll be writing sub-tasks or steps for will be "Buy a CD.”

Buy a CD

User: Impatient Buyer

I know what I want and I'm in a hurry. I'll use the Kiosk to help me determine if the
item is in stock, how much it costs, and locate it in the store. I'm comfortable with
the web and use software frequently.

Goal: find and buy a CD quickly

Context: busy retail floor with lots CDs, movies, and video games. The store has
kiosk software, MediaFinder, that allows me to locate the CD in the store.

User Intention

After locating kiosk indicate the CD title I'd like to find

Jeff Patton, jpatton@thoughtworks.com 113

Bringing User-Centered Design Practices into Agile Development Projects

Determine if the CD is in stock as new, used, or both

Determine a price for the CD

Determine location of CD in the store and capture it in a way I can that
makes it easy for me to find

Find the CD, buy it, and leave

We've just written part of a use case - the part specific to the user of the use case. A use
case normally describes the interaction between two or more parties — “actors” in use-case
terminology. At each stop we've assumed the kiosk did something sensible to allow us to
get to the next step, but we’ve focused on the user first.

3. Identify the product’s responsibilities relative to the
task steps the user will perform.

Notice the heading “user intention” in our task instructions above. At this point we’d like to
capture what the hero, “Impatient Buyer”, intends to do. Not necessarily specifically what
he does do. Know our user’s intention allows us to begin to determine what the kiosk has in
way of responsibilities to best help the user.

For each step in the task, list the product’s responsibility to help the user move from step to
step.

In our example above, the product will be the MediaFinder kiosk.

Buy a CD

User: Impatient Buyer

I know what I want and I'm in a hurry. I'll use the Kiosk to help me determine if the
item is in stock, how much it costs, and locate it in the store. I'm comfortable with
the web and use software frequently.

Goal: find and buy a CD quickly

Context: busy retail floor with lots CDs, movies, and video games. The store has
kiosk software, MediaFinder, that allows me to locate the CD in the store.

User Intention System Responsibility

Present an easy to find place to enter a
CD title

After locating kiosk indicate the CD title
I'd like to find

Present a list of CDs that match the title,
or if not found, some that closely match
the title the user entered

If nothing similar was found, let the user
know

Determine if the CD is in stock as new,
used, or both

Jeff Patton, jpatton@thoughtworks.com 114

Bringing User-Centered Design Practices into Agile Development Projects

For each title found, show how many are
in stock, and if they're new or used

Determine a price for the CD

For each title found, show the price of
the item

If the prices vary for new and used, show
that

Determine location of CD in the store and
capture it in a way I can that makes it
easy for me to find

For each title in stock, indicate the
location in the store where it can be
found

Offer to print a map for one or more of
the titles

Find the CD, buy it, and leave

In the second column under “system responsibility” we've noted the things the system
would do in response to what our user did in the “user intention” column. Notice how our
system behaves a bit like a person doing something sensible at each process step.

The use case format used here is an Essential Use Case or Task Case - a format described
by Constantine & Lockwood in Software for Use. It's a variation on a multi-column format
first introduced by Rebecca Wirfs-Brock. The multi column format allows us to easily see
what our user does, and what the system does in response. Separating each statement into
another row allows us to see the chronological back and forth that’s occurring in our user’s
“conversation” with the system. You could easily merge these into a single column if you
wish. Just prefix each statement with “the user will” or “the system will.”

4. Identify abstract components that help the product meet

its responsibilities to the user.

Think of an abstract component as the idea of a real user interface component that
describes the component’s general responsibility; for instance in a typical graphic user
interface the user is often presented with the need to make a choice from a series of
possible choices. Specific ways to make those choices might include radio buttons, check
boxes, or a drop down selection list. All these components afford the selection of a
particular choice. If we didn’t want to decide just yet what the specific Ul component might
be, a “choice selector” might be a simple way to abstractly refer to this component.

> An abstract component refers to a general type of component with a certain
responsibility.

In Constantine, WindlI, Noble, & Lockwood’s paper From Abstraction to Realization they
describe the idea of canonical abstract components. They divide components into two
general sets of responsibilities: those that contain and present information and those that
perform actions. The following symbols are used for each respectively:

Container: contains and presents information.

Jeff Patton, jpatton@thoughtworks.com 115

Bringing User-Centered Design Practices into Agile Development Projects

\= Action: allows execution of an action

Commonly in graphic user interfaces components present information and allow its
manipulation. The choice selector mentioned above is just such a component. The two
symbols above are easily combined into an actionable container:

2

% Actionable Container: contains and presents information and allows the information to
be acted on through selection or manipulation.

The paper authors go on to describe a number of canonical abstract components that can be
used to construct abstract user interfaces. The canonical abstract components suggested
are useful, but most useful is the idea of thinking of Ul components in the abstract based on
their responsibility/intended usage.

> For the Task Case you‘ve built so far, for each system responsibility, decide
on an abstract component that would help the system meet its responsibility.

Do this by noting the name of a canonical component on a post-it note and sticking it
directly on your task case. Use a name for the component that makes clear what its
responsibility is — like “Title search acceptor.” Draw a symbol in the corner of each
component if it helps you to remember the nature of its responsibility: container, action, or
both. You might find here that having the task case written on a whiteboard, poster paper,
or printed large on sheets of paper will help.

User Intention System Responsibility Abstract Component

Present an easy-to-find place to I Quick Search Input
enter a CD title
™\ Find titles button

After locating kiosk indicate the
CD title I'd like to find

Present a list of CDs that match T List title indicated what was
the title, or if not found, some that | searched for
closely match the title the user

entered O List of titles, include artist
If nothing similar was found, let 1 couldn't find anything
the user know similar to what you were looking

for” message

Determine if the CD is in stock
as new, used, or both

For each title found, show how O New or Used indicator by title

many are in stock, and if they're

new or used [J 1n or out of stock indicator by
title

Determine a price for the CD

For each title find, show the price | [J New price by title
of the item

O used price by title
If the prices vary for new and

used, show that.

Determine location of CD in the
store and capture it in a way
that makes it easy for me to
find

Jeff Patton, jpatton@thoughtworks.com 116

Bringing User-Centered Design Practices into Agile Development Projects

For each title in stock, indicate the | [store location by title
location in the store where it can R
be found ™ “print me a map to this

. location” button
Offer to print a map for one or

more of the titles

Find the CD, buy it, and leave

In this example consider each note in the third column a post-it note you might have jotted
down while reviewing the task case.

A helpful product might take on more responsibilities

As you're going through the product’s responsibilities you might find more information or
actions the system could present or support that you think might help our user succeed.

For example, since the search for the titles could take a couple seconds, a container with a
progress bar might be nice so the user knows the request to search was heard and is in
progress. The location name within the store might not be enough, showing a store map
close by with the locations clearly labeled might be nice.

Think of the product as a very helpful collaborator with our user, then think of any other
components to add that might help our collaborative product better succeed in its goal to
help our user.

The process of looking at user tasks and considering how the system might best support
those activities is a common idea among user interface practitioners. Cooper & Reimann’s
About Face 2.0 gives a good description of a similar process.

Additional Reading

Cockburn, Writing Effective Use Cases (Addison-Wesley, 2000)

Constantine & Lockwood, Software For Use (Addison-Wesley, 1999)

Constantine, Windl, Noble, & Lockwood, From Abstraction to Realization (ForUse
website: http://www.foruse.com/articles/canonical.pdf)

Cooper & Reimann, About Face 2.0 (Wiley, 2003)

Jeff Patton, jpatton@thoughtworks.com 117

Bringing User-Centered Design Practices into Agile Development Projects

Component to Paper Prototype, Step by Step

Armed with a user tasks and an inventory of candidate user interface
components you can begin to arrange the components in a candidate user
interface.

1. Create candidate interaction contexts

An interaction context is a useful idea from Constantine & Lockwood’s

Software for Use.
> An interaction context is an abstract container for UI components. It has a
name and a higher level goal or purpose.

In computer software an interaction context may be a particular screen or dialog box.
However, just like tasks, contexts may contain smaller sub-contexts. For example if you
were to look for a product on a typical ecommerce site, you'll find the searched for items
appear in a context - let’s call it the “found items.” But likely next to that search return are
contexts that support navigation to other areas of the site, and contexts that show you
items you might be interested in. They all occupy the same screen, but contexts are likely
clearly separated from each other on that screen and have clearly separate responsibilities.

From the user interface an interaction context switch often happens when the user’s goal
has changed somewhat substantially. For instance when I first enter an ecommerce
website, my first goal might be to find something and the first context I see likely supports
that goal. Once I've looked for some things, I may need to look more closely at those
things I've found. You’ll generally find screens in an ecommerce website that support
scrutinizing individual items in more detail. In that context you’ll find it better supports
those goals by having components and a layout to do so. Contexts may appear adjacent to
each other in the user interface or the user may navigate from one context to the next.

Using the task case we’ve written so far, look for goal changes that might indicate a context
change. In this task case starting to search might be one goal, then evaluating what was
found might be another big goal. Let’s start with two contexts that support those goals.
Give those contexts a name, and note their name and goals on a post-it. Stick the post-it
on a sheet of paper.

Starting Point: give the user a clear starting point for starting a search for titles in the
store.

Search Return Evaluation: help the user decide if the searched for items were the items
she was looking for or an easy way to reinitiate the search if not. Also aid in the quick
decision to buy any successfully found item.

2. Transfer abstract components to candidate interaction
contexts

For each abstract component, transfer it to the interaction context that best matches the
goal that the component is helping the user reach.

You might find that some components belong in multiple contexts. If so, write up an
additional post-it and place it there.

You'll now have sheets of paper representing your named interaction contexts, each of
those with an inventory of post-it note components.

Jeff Patton, jpatton@thoughtworks.com 118

Bringing User-Centered Design Practices into Agile Development Projects

3. Arrange components in interaction contexts according to
use

At this stage we'll begin to think a bit more concretely about the user interface.

If you're reading this, and at this point I strongly suspect you are, you're likely reading from

top to bottom and from left to right. Typically, software user interfaces also read from top
to bottom and left to right.

Look back at the task case we've written. Arrange the component post-its in a logical
spatial arrangement that allows the user in the task case to encounter each component in a
logical order — from top to bottom and from left to right. You should be able to start
imagining a user interface screen in your head.

4. Validate the abstract contexts and components against

the user task(s)

To make sure these components and their arrangement are making sense, let’s check what
we have so far against our task case.

Place yourself in the role of the user. Think about the user’s likely skills, goal and context of
use as you do this. Looking at the first interaction context the user would encounter then
go through each step in the task case. At each step imagine using the abstract component
to accomplish your intention. Assume each component does its job well.

As the task case’s user, make sure you have every component you need as you step
through the task case. Make sure the component appears where you expect it to in the
user interface.

» If you encounter missing components, add them.

» If some components don't get used, consider removing them.

» If the intention of some components could be better stated, rename
them.

5. Convert each abstract component to a user interface
component
At this stage it’s time to think much more concretely about user interface.

For each abstract component make a preliminary choice about what that component could
be. Draw the component in pencil on heavy paper — an index card or card stock works well
here. Draw the component the approximate size that you believe it should be in the
interaction context. You may need to cut the interaction context down to size if you believe
it will fall inside some other interaction context. Place the component on the interaction
context in the place where you believe it should be.

Once all components are arranged in an interaction context inspect the layout. You may
find you need to recreate or resize some of the components. You may find that drawing
boxes or lines directly on the paper for the interaction context helps your layout a bit.

When you feel you've got all the components represented well for now, stick them down
with repositionable double-sided tape.

You've now built a componentized testable paper prototype.

You'll find lots of great ideas on materials and approaches for building and testing paper
prototypes in Snyder’s Paper Prototyping.

Jeff Patton, jpatton@thoughtworks.com 119

Bringing User-Centered Design Practices into Agile Development Projects

6. Revalidate the paper contexts and components against
the user task(s)

As you did when interaction contexts were sheets of paper and components
were post-it notes, assume the role of the user and step through the task
case. As when components were post-its, add, remove, or change
components so that they support the task case effectively.

Additional Reading

Constantine & Lockwood, Software For Use (Addison-Wesley, 1999)
® Snyder, Paper Prototyping, (Morgan-Kaufmann, 2003)

Jeff Patton, jpatton@thoughtworks.com 120

Bringing User-Centered Design Practices into Agile Development Projects

Usability Testing a Paper Prototype, Step by Step

On a typical software project, finished software is tested by testers to make sure it doesn't
have functional errors. However, for most software to be considered to be a success, the
application must not only be free of bugs, but must be easily used by its primary user
constituencies. Testing for this quality is done through usability testing. And, happily, basic
usability testing can be done ahead of building the actual software.

If you've built a paper user interface prototype, you've considered the users and their
probable usage, and selected screens and components that best support that usage.
However, real users are a bit unpredictable. Validating the design on paper with real
candidate users will help give you more confidence that your candidate user interface really
is meeting its goals, and that your software really will be usable.

1. Select test participants

Identify people you could use for your test. Ideal candidates will match the characteristics
of the intended audience for the software. The more critical the success of the finished
product, the more appropriate it is to locate users that best represent the audience of your
product. Snyder’s Paper Prototyping gives great guidance on finding and identifying
candidate users for usability tests.

However, if you're at a preliminary stage with you user interface design, it's very valuable
to quickly find someone that, while not ideal, can help to refine the design you might place
in front of a more ideal candidate. For this purpose select individuals from within your
office, friends, or family. People close by that you can coach a little on how to best help
your user interface design effort. We'll call these sorts of test subjects user stand-ins.

Identify some user stand-ins. For preliminary testing of a user interface design, 2-4 is
sufficient.

Coach user stand-ins by explaining to them:

» the purpose of your product

» who the target users are, and what sorts of characteristics they're likely
to have

> where the product will likely be encountered and characteristics of that
environment

2. Identify tasks to test

Identify the functional level tasks you’d like to validate for your user interface prototype. A
typical user interface is built to support a number of functional level tasks. Identify the
tasks you’d like validated with your candidate user interface.

For the example we’ve been building “Find a CD"” was the primary task we’d started with.
We may want to consider related tasks that our user interface might also accommodate:

Locate a title from an artist I know

Browse new arrivals

Browse titles similar to those I already own and like
Browse items on sale

YV VYV

Jeff Patton, jpatton@thoughtworks.com 121

Bringing User-Centered Design Practices into Agile Development Projects

For each task consider alternative conditions, exceptions, or errors you might also want to
test. For example:

> Title doesn’t exist
> Artist doesn’t exist
> Title was found, but not in stock

3. Identify tester roles

For an effective usability test, in addition to test subjects you’ll need to fill three primary
roles in a usability testing team:

The facilitator will be responsible for interacting with the test subject and directing the
usability test. The facilitator will set up tasks being tested by describing some starting
context then naming the task and the goal. The facilitator should not provide any other
instruction on performing the task.

The computer will control the paper prototype acting as the computer responding to
gestures and verbal commands issued by the test subjects. The computer must not speak.
Even if directly spoken to, smile and respond by reminding the test subject that “computers
can't talk.”

The observers will be responsible for quietly and unobtrusively recording results for the
test.

Use only one person on the facilitator role. One or two people working together may play
the computer role. One to four may fill the observer role.

Combining roles in one person is difficult. But if people are unavailable to fill the roles,
combining the facilitator and computer role can work. Combining the facilitator and
observer role can also work but is less effective. Combining all three roles in one person is
a bad idea.

Keep three personalities in mind when performing a usability test:
» The flight attendant

A flight attendant’s job is to both provide service to his or her passengers and to keep
them safe. The facilitator generally assumes a flight attendant role to make sure the
user has proper instruction and feels safe. If the user makes missteps while testing the
user interface, make sure they understand that it’s not them being tested, but the user
interface. Make sure they don’t feel foolish.

» The sportscaster

The sportscaster’s job is to make sure that everyone watching or listening to the action
knows what’s going on. The facilitator balances this personality with the flight attendant
personality. While observers are quietly taking notes they may not be able to see
specifically what the user is doing or what’s happened in the user interface. The
facilitator in the sportscaster personality maintains a dialog with the test subjects with
the intent of making sure everyone in the room understands the play-by-play of what's
going on in the usability test.

» The scientist

Everyone assumes the scientist personality. Observers, computer, and facilitator all
strive to ensure they’re getting accurate information about how effectively users are
able to reach their goals in the candidate user interface. While eliminating all bias is

Jeff Patton, jpatton@thoughtworks.com 122

Bringing User-Centered Design Practices into Agile Development Projects

impossible, the facilitator works to eliminate bias by not leading or suggesting to the
users they follow any particular path through the user interface. The computer tries not
to hint to the users where to click next. Even reaching for a guess at what the next
component may be might inadvertently hint the user on what’s next. Observers must
sit and record quietly. Non-verbal gestures, sighs, gasps, or groans all contribute to
influencing the user to behave or not behave in a particular way. Avoid these behaviors.

Choose the team that will run the usability test. Together decide on who will perform in
what role. Review and make sure everyone understands the roles and the three important
personalities they all need to be aware of.

4. Set up test facility

Chose a test location where all participants including observers, computer, facilitator, and
test subjects can sit around a table or work area.

Position test subjects on one side or end of the table.

Position the computer directly across from the test subjects. Tape the background of the
user interface down to the table so it doesn’t move during the test. Set up the screen to its
starting point. Place all the other components you’ll need close by. Consider placing them
in a folder so they're not visible to the test subjects.

The facilitator should sit to one side of the test subjects.

The observers should sit at available places around the table with notepads or post-it notes
ready to take notes.

5. Perform tests
Invite users in to the test.

You may perform the test with one test user or two users working together as a pair.

Generally explain the product being tested to the users. Explain to them the test goals of
determining if the proposed user interface is effective at helping users meet their goals.
Inform them they’ll be asked to accomplish a few tasks with the proposed user interface.

Explain to the test subjects how to use the paper prototype and your very low-tech
computer. They’ll use their finger as a mouse and point directly to objects on the screen
and indicate that they wish to click, right-click, or double click on them. If they need to
enter data, ask them to write directly on the prototype using a marker. [The computer
should cover input fields with removable tape or transparency film to allow users to directly
write on the user interface.]

Ask the users to “think out loud.” When they first look at the screen ask them to comment
on what they see. As they move to perform an action in the user interface, ask them to
comment on what they’re about to do, why, and what they expect to happen. Pairing two
users allows this to happen naturally. Two paired users will generally discuss with each
other what they’re seeing and what to do next.

Introduce the first task and goal to the test subjects and ask them to begin.

As users step through the user interface the facilitator should offer guidance to the test
subjects without suggesting how to use the user interface. This is the flight attendant. The
facilitator also keeps conversation active suggesting users comment on what they’re doing
or what they see or asking them directly. This is the sports caster.

Jeff Patton, jpatton@thoughtworks.com 123

Bringing User-Centered Design Practices into Agile Development Projects

As users step through the prototype observers should write down any observations they
have about the user interface. What seems to be working, along with errors, missteps, or
confusion the user has with the UI.

When the users successfully achieve the goal that completes the task, the facilitator may
stop the test. Alternatively if the users just can’t complete the task they can stop the test
explaining that, “It looks like we've got quite a bit or work do to on this user interface for it
to work effectively. Let’s stop the test for now. We've gathered lots of helpful information
to help us improve the design.” This is the flight attendant speaking.

The facilitator then asks the observers if they have any questions for the test subjects.

The observers, silent until now, ask question being careful not to bias the users or imply
that they should have done things differently. This is the scientist and flight attendant.

The facilitator then introduces the next task and goal while the computer quickly resets the
user interface if needed.

Continue with the testing of each task until all tasks have been tested or time runs out.
One, to one-and-a-half hours is a good time limit for a usability test. This can be tiring
work for everyone involved.

After the test is complete, thank the subjects and let them leave. If you're using test
subjects from outside your company, it’s customary to pay the test subjects or give them a
gift of some type to compensate them for their time.

The test team then needs to discuss what they’ve observed and either respond to feedback
immediately before the next test subjects show up or elect to consolidate results later and
respond later that day or on a subsequent day.

6. Respond to feedback immediately

One advantage of a paper prototype is the ease in which it can be altered. If there are
obvious issues with the prototype, there’s no need to wait for a next test subject to
predictably encounter them. As a team discuss what the big problems were with the test
they just observed. Agree on changes to make and alter the paper prototype before the
next test subjects arrive.

7. Consolidate results and respond

After a few usability tests the observers will have accumulated a number of notes regarding
the issues they observed users encounter. We now need to consolidate those notes from
multiple interviews to make decisions about where to change the user interface prototype.

Transfer observer notes to post-its — one observation per post-it. Each observer combines
their post-its with the others on a wall or table top. Notes that describe similar problems
should be placed near each other. Dissimilar notes farther apart. At the end of this
consolidation exercise you'll find you have many clusters of notes. Some of the clusters will
likely be bigger than others. These are likely the areas with the most severe problems.
This type of model is referred to as an “affinity diagram” since the information in it is
clustered by affinity.

For each cluster write another post-it note summarizing the contents of the cluster. Use a
different colored post-it than the others.

For each summarized cluster, starting from the largest clusters first, decide as a team how
best to change the user interface to rectify the problem.

Perform adjustments to the paper prototype and prepare for your next usability test.

Jeff Patton, jpatton@thoughtworks.com 124

Bringing User-Centered Design Practices into Agile Development Projects

Additional Reading
® Snyder, Paper Prototyping, Morgan-Kaufmann, 2003

Jeff Patton, jpatton@thoughtworks.com 125

Bringing User-Centered Design Practices into Agile Development Projects

User Story Driven Development Processes and User

Interface Design

From the time when they were originally described in Extreme Programming Explained, User
Stories have become popular as an approach to representing, estimating, and planning
requirements in Agile Software Development Processes. The precise definition of a user
story varies on the source. Beck’s original Extreme Programming Explained describes a
user story as a sentence or two written on an index card as a reminder for a future
conversation between developer and customer. In User Stories Applied, Mike Cohn puts
quite a bit more detail around how you might create and use User Stories throughout an
Agile development process. Mike also credits Rachel Davies with a particularly useful story
writing form that can work well to combine elements useful for user interface design.

Rachel suggests we write stories like this:
As a [type of user]
I want to [perform some task]
so that I can [achieve some goal.]

Using this story writing form we identify types of users, tasks they wish to perform, and the
goal they wish to achieve. In our CD buying example a story for the software we might
write could read like this:

As a harried shopper
I want to locate a CD in the store
so that I can purchase it quickly, leave, and continue with my day.

If we were to write the name of such a story as concisely as possible to place in a user story
list, or backlog, we might use the simple name: “locate a CD"” which also happens to be a
good task name.

User stories often describe the tool, not the user and task

In this example we’ve been describing the software we’d like to build from the perspective
of the user who needs to perform particular tasks. However, sometimes we get tempted to
describe the way the finished software might look or behave. For example we could just as
easily have written the story this way:

As a harried shopper
I want to enter the CD name in the search box
so that I can view the CD location in the store from the search return.

We might then be tempted to concisely describe the story as “"CD search screen.” While
more precise, this story has already made the decision that there is a search box where I
can type in the CD name and that the CD location will appear as part of the search return.
Much of the user interface design has already been pre-supposed in this story. Rather than
describing the task abstractly the story describes the user using the software, or the “tool,”
in a specific way.

While with this particular user interface the use of a typical search box, search button, and
search return list may seem like an obvious and adequate solution, with some other design
problems the solution will be far less obvious. And, capturing suppositions about the design
solution inside your user story may make it likely you and your team may not consider
alternative viable design solutions later during a Ul prototyping and testing effort.

Jeff Patton, jpatton@thoughtworks.com 126

Bringing User-Centered Design Practices into Agile Development Projects

Estimable user stories are often low level

A user story as a form of software requirement for Agile Development often carries the
constraint that developers be able to complete the construction of story functionality in a
single development cycle, or iteration - generally one to three weeks. As Agile
Development matures the idea of smaller user stories increases in popularity. Currently it's
common for a user story to be no larger than a single developer can complete in less than
three days.

Smaller user stories are easier to estimate, quicker to develop, and more accurate as a tool
to measure project progress. However, the smaller and more estimable user stories get,
the less likely they are to be task-centric, and the more likely they are to describe specific
elements of the finished software. If they are task-centric they’re more likely to be written
at a user goal level too low (below functional level) for easily designing and validating user
interface. Generally speaking, smaller, more granular user stories often describe proposed
details of the user interface or small user sub-tasks such that it becomes difficult to see how
and why a user might use the finished software. This makes the user interface difficult to
design.

If your project is moving to smaller user stories, you may find you’ll have to maintain task
models other than user stories alone to understand your users and their intended usage of
your software. You may also find you’ll have to engage in user interface design,
prototyping, and testing earlier as part of initial story writing and release planning. These
smaller more detailed stories represent a more detailed understanding of your software.
You'll have to do more work early to gain this level of detailed understanding instead of
letting that understanding emerge or be discovered over time.

> When possible, scope your project using functional level, task-centric user
stories. Defer user interface design, prototyping, and testing activities till the
latest responsible moment.

Poppendiek and Poppendiek use the term “latest responsible moment” in their book Lean
Software Development to describe a strategy of deferring decisions until we know as much
as possible about the problem we’re solving. Jim Shore puts it well it his blog: “...it's the
latest responsible moment, not the /ast possible moment. That wouldn't be responsible.”

Prototyping and testing user stories may result in more user
stories

It’s often easy to use pencil, paper, and tape to prototype and test a user interface that
works very well. But, then when it comes time to estimate the cost of building such a user
interface, the cost is prohibitively expensive — or at least more than we want to stomach
right now.

I've found it makes good sense to have developers involved in the prototyping and testing
effort both to gain a better understanding of what works well with end users, and to help
understand the development cost of what we’re prototyping and testing. If the cost is high,
it’s worth prototyping and testing variations of the user interface that, while they may be a
little less ideal from a user’s perspective, could be significantly less expensive to develop.
It's possible to write a first user story that requests the building of the lower cost user
interface, and a subsequent story to be scheduled for a later release that upgrades the UI to
the better performing version.

Alternatively we might decide an expensive user interface is economically feasible for our
product, but we just don't believe it’s a good idea to release it into development as one
large user story. In these situations the user interface may need to be broken into smaller

Jeff Patton, jpatton@thoughtworks.com 127

Bringing User-Centered Design Practices into Agile Development Projects

stories that describe portions of the functionality such that as each portion is implemented it
can be seen, demonstrated, and tested in the finished software.

In both of these examples a task-centric user story may need to be split into subsequent
user stories that may represent different versions of the same user completing the same
task, or versions that allow that same user to only complete a fraction of their intended
task. In both of these cases the splitting comes as a consequence of better understanding
the user interface after prototyping and testing.

As you prototype and test your user interface be prepared for surprises that may cause the
addition of or splitting of user stories in your Agile project.

Combining a solid user interface design approach with a strong story-driven Agile
development approach is not without challenges. There aren’t hard and fast solutions to
many of the complications that might arise. Stay alert and be prepared to improvise and
compromise.

Additional Reading

Beck, Extreme Programming Explained, Addison-Wesley, 1999

Beck, Extreme Programming Explained 2" Edition, Addison-Wesley, 2004
Cohn, User Stories Applied, Addison-Wesley, 2004
Poppendiek & Poppendiek, Lean Software Development, Addison Wesley, 2003

Shore, Beyond Story Cards, http://www.jamesshore.com/Multimedia/Beyond-Story-
Cards.html, 2005

Jeff Patton, jpatton@thoughtworks.com 128

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Use Frequent Reflection Sessions To
Adaptively Adjust Your Process

QO In Agile Development approaches reflection sessions, or retrospectives, are
commonly held at the end of development cycles — iteration or release

QO Before engaging in a reflection session:
0 evaluate the product you've built thus far against its goals
o0 evaluate your team’s progress building the product relative to plans made

O The goal of the reflection session is to identify opportunities to alter the process the
team follows to ultimately improve the quality of the product and/or the pace of
progress the team is making

O A common reflection session smellis to identify what keep these| try these
worked, and what didn’t work

0 Reflection sessions may turn into complaint sessions
where the only goal may be to assign blame

Q In a simple reflection session identify methodology
characteristics:

o to keep doing ongoing

problems

o to try doing

o that are ongoing problems
96

ThoughtWorks:

Tne art of heavy lifting™

Exercise: Perform a Reflection
Session On Your First Release

Q Start by quickly measuring your progress: keep these | try these
how many tasks did you end up supporting in
your product? Was that more or less than
you expected to support?

O Discuss your product: how well did you fare
on usability testing?

O Draw the simple 3 sectioned chart pictured m
|
O Populate each section with characteristics of problems
your approach that:

o You liked doing and want to keep doing next
release

o Things to try doing differently next time

0 Ongoing problems that you don't see clear
solutions to

10 minutes

97

Jeff Patton, jpatton@thoughtworks.com

129

Bringing User-Centered Design Practices into Agile Development Projects

Reflective Process Improvement
Reflect and Generate Ideas for Process Change

A necessary part of improving a process is looking back reflectively at how that process has
worked historically.

Sometimes the process of looking back results in complaints on what
didn’t work without any clear path to improvement.

Reflection sessions can often turn into gripe sessions or never-ending informal discussion.
As with most activities it's good to engage in a reflection session with a goal in mind for
what you expect to get out of it. Some of the most valuable things to come from a
reflection session are the suggestions for process improvement. Starting with this goal in
mind helps focus a reflection discussion.

It's easy to focus too much on negative aspects and improvement. At times we forget to
focus on what’s working well. If we fail to call out and discuss what’s working well, we run
the risk of forgetting it and inadvertently dropping the good parts of our process.

We can’t always solve all problems, but that doesn’t mean we want to avoid them. Often
it's important to keep track of problems we’ve discussed, but that have no easy solution.
We need to remember these and keep thinking about them in order to generate future
solutions.

Use a reflection session that captures three categories of details: what’s
working well, suggestions for improvement, and issues to table for future
discussion.

To run a reflection session start by choosing a neutral moderator. Borrow a member from
another group, a business associate or friend — one with a good sense of humor and good
penmanship.

Hang sheets of flip chart paper on the wall. Label one sheet “works well,” one sheet “things
to try,” and another sheet “issues.”

The moderator should start the reflection session by asking what worked well, and writing
down the ideas that come from the group. When ideas slow down, the moderator should
poll the people who didn’t contribute ideas. This helps everyone feel involved.

Then the moderator should ask for suggestions about changes in the process to try and
write these down as participants say them. The moderator should again poll people who
don’t volunteer information.

As the discussion proceeds, participants will naturally discuss problems. Give those
discussions space to happen. When the discussion starts to slow, it's a good time to ask
“can anyone think of something to try to solve this problem? Or, should we note it as an
issue to take up later?”

Use the three flip chart categories to capture these most important deliverables of your
reflective process improvement session.

Jeff Patton, jpatton@thoughtworks.com 130

Bringing User-Centered Design Practices into Agile Development Projects

Additional Reading
®m Cockburn, Crystal Clear : A Human-Powered Methodology for Small Teams
(Addison-Wesley, 2004)

m Derby & Larsen, Agile Retrospectives: Making Good Teams Great (Pragmatic
Bookshelf, 2006)

Kerth, Retrospectives: A Handbook for Team Reviews (Dorset House, 2001)

Jeff Patton, jpatton@thoughtworks.com 131

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Part 3 Agile Tips For Ux Practitioners

11. Plan useful releases: consider the resulting workpractice of the
release’s target users for each release

12, Scale features when planning product releases: can the
scale of features be reasonably reduced in order to release sooner
and still effectively support target user workpractice

13. Validate usability before development: use paper prototyping
and light weight usability testing to validate features before
development

14. Validate usability after development: as iterations of features
finish development, perform usability testing on the finished
features — they'll change during development

98

Jeff Patton, jpatton@thoughtworks.com 132

Bringing User-Centered Design Practices into Agile Development Projects

Part 4: Adapting & Thriving

Because no one ever gets things right the first time, and Agile development places big
emphasis on adaptation, we’ll make adjustments to the software we built in our first
release. We'll also add additional features to create a better second release.

We’'ll close the day by talking about a few organizations that have successfully adopted Agile
Development and strong User Centered Design practices. We'll discuss common attitudes
and approaches they share that have allowed them to be successful.

Notes

ThoughtWorks:

The art of heavy lifting:

Activity: Your Second Product
Release

URelease Planning (5 minutes) ‘/;,;_;:;;g\‘

N 4
QORelease Building (15 minutes) (b:,d/
QRelease Testing (10 minutes) 7\
ORelease Reflection (10 minutes) N 4

45 minutes

101

Jeff Patton, jpatton@thoughtworks.com 133

Bringing User-Centered Design Practices into Agile Development Projects

ThoughtWorks:

The art of heavy lifting:

Agile Development and Strong User Centered
Design Have Worked Together For Years Now

Autodeck: O Alias, now Autodesk, has used a blend of eXtreme Programming
heavily influenced by Jim Highsmith’s Adaptive Software
Development since 2001. They've blended various user centered
design approaches to allow their design team to successfully fill the
Agile customer role.

» O LanDesk designers work as part of an XP style customer team that

LANDe§mIg includes product managers and other requirements specialists.
o Their design approach blends Contextual Inquiry with the use of
personas.

~~p U Yahoo has been growing their practice of Agile Development heavily
X A. el influenced by Scrum since 2004. Their strong user experience
practitioners have evolved newer ways of working to adapt to the
faster pace and increased collaboration.

. ThoughtWorks consults for clients building mission critical
ThoughtWorks applications often for internal use. ThoughtWorks has begun to
incorporate UCD techniques into the day-to-day practices of its
business analysts including contextual inquiry, role modeling,
persona building, and low-fi UI prototyping and usability testing.

102

ThoughtWorks:

Tne art of heavy liftng™

Alias’ Lynn Miller on Agile Development

Q On Alias’ design and usability approach

“We found that our methods for collecting customer data did not need to change much, but the
frequency and timing of collection changed considerably.”

Q Strong user model

"By being specific (i.e., not just saying "artists" or "anyone who draws") we knew that we would
get applicable data from the users mentioned previously but not from photo manipulators or CAD
package users, even if they bought our software.”

Q Strong business goals drive prioritization

“However, only a small number of the people who downloaded and tried the software were
actually purchasing the product. To address this, we set the goal for the V2.0 release to be
"remove the top obstacles that prevent people who download the product from purchasing it.”

O Feature scaling
on validating usability of features prior to development:

“...we knew that the design had achieved its design goals and users could do what we wanted
them to be able to do. This allowed us to be able to safely say "no" to incremental feature
requests because we understood what was meat and what was gravy.”

Q Strong team collaboration

“..the interaction designers would present design concepts to the development group for feedback
and feasibility. We would also f)resent usability test results so everyone would know how well the
designs were working and could suggest solutions to interface problems.”

“Daily interaction between the developers and interaction designers was essential to the success
of this process.”

103

Notes

Additional
Reading:

Miller, Case Study
of Customer Input
for a Successful
Product (Agile 2005
practitioner report,
http://www.agile200
5.0rg/XR19.pdf)

Baker, Beyer, &
Holtzblatt, An Agile
Customer
Centered Method:
Rapid Contextual
Design (XP/Agile
Universe, 2004,
http://www.incontex
tdesign.com/resourc
e/pdf/XPUniverse200
4.pdf)

Hansell, In the
Race With Google,
It's Consistency
vs. the 'Wow'
Factor (NY Times,
July 2006)

Abilla, Scrum at
Yahoo
(http://www.shmula.
com/159/scrum-at-
yahoo)

Jeff Patton, jpatton@thoughtworks.com

134

Bringing User-Centered Design Practices into Agile Development Projects

Yahoo on Agile Development

ThoughtWorks:

The art of heavy lifting:

its competitors:

adoption of Scrum, and has upwards of 500 people (and steadily

O In response to a July 2006 NY Times article comparing Google with

“What the Times doesn't say is that Yahoo! is now 18 months into its

Notes

growing) using Scrum in the US, Europe, and India. Scrum is being used
successfully for projects ranging from new product development Yahoo!
Podcasts, which won a webby 6 months after launch, was built start-to-

results).”

finish in distributed Scrum between the US and India) to heavy-duty
infrastructure work on Yahoo! Mail (which serves north of a hundred
million users each month). Most (but not all) of the teams using Scrum at
Yahoo! are doing it by the book, with active support from inside and
outside coaches (both of which in my opinion are necessary for best

--Pete Deemer Chief Product Officer, Yahoo! Bangalore / CSM

104

Parallel Track Development Separates Design and
Evaluation Into One Track, Building Into Another

ThoughtWorks:

The art of heavy lifting*

Agile Customer or
Design Team

I Composition
- / design&
Composition ‘. plan O Small number of seasoned
O Interaction Designers developers
Q Prototypers QO UI development skills
O Business Analysts ; Responsibilities
Responsibilities a _Imple_ment features for current
. iteration
QO Gather customer input for y —
features to be implemented in \ 4
later iterations e
QO Design next iteration features
QO Be available to answer
questions on current iteration <_ -
development e
QO Test features implemented in y N
the previous iteration \e"a'“a‘e/

Development team

105

Jeff Patton, jpatton@thoughtworks.com

135

Bringing User-Centered Design Practices into Agile Development Projects

Design and Coded Features Pass

Back and Forth Between Tracks

The art of heavy lifting:

Iteration 0 Iteration 1 Iteration 2 Iteration 3

 planning gather user input e gather user input * gather user input i
£ « data gathering for iteration 3 for iteration 4 for iteration 5 i
5 design for features features features 3
(] iteration 1 « design iteration 2 « design iteration 3 « design iteration 4 !
o1 features — high features features features i
£ technical * support iteration 1 * support iteration 2 * support iteration 3 !
% requirements, low development development development 3
3 user requirements « validate iteration « validate iteration i

—features < _2"Batures 1 |l
of \ \ oW
\ |
%

= ? | | > |
|“—) » development irﬁplement iteration imﬁlement iteration imp[é‘ment iteration i
= environment 1 features 2 features 3 features i
“E’ setup fix iteration 1 bugs fix iteration 2 bugs if | |
= e architectural if any any !
o] “spikes” 3
]
[a)

time

Parallel Track Development Separates Design and
Evaluation Into One Track, Building Into Another

rt of heavy lifting™

1. “we did not waste time creating designs that were not used”

O “three large wins for the interaction designers with this parallel-track process”

2.

“we could do both usability testing of features and contextual inquiry for design on the same

customer trips, which again saved us time”

3. “we were always getting timely feedback, so if there was a sudden change in the market
(like new competing software being released, which happened) we received input on it rig
away and could act accordingly”

“two big wins for the developers”

1. “maximize coding time since they didn't have to wait for us to complete paper prototypes
and usability tests”

2. “didn't waste their efforts coding the various design concepts for the innovative interface
pieces. [the design team created and validated multiple solutions passing the best to
development for final implementation.]”

ht

“...in reality it was a little more complex. Some designs needed longer than a single

cycle to complete. For example, one particularly troublesome feature took us over
cycles before the design passed all of its goals.”

“The Usability Engineering team at Alias has been gathering customer input for ma
years, but never as effectively as when we work with an Agile development team.”

5

ny

107

Jeff Patton, jpatton@thoughtworks.com

136

Bringing User-Centered Design Practices into Agile Development Projects

Notes
ThoughtWorks: BRI LEL

Parallel Track Development’s Most Common “ . Reading:
Smell is Reversion to Waterfall Thinking » Cockburn, Are

iterations

O Waterfall Thinking or Pipelining haz_alrdt?,us to your
project?
(http://alistair.cockb
urn.us/index.php/Are

_iterations_hazardou
o "Discussion that felt like collaboration when they were working on the same feature set now s_to_your_project%
feels like interruption...To protect themselves, so they don't get bothered while they work out 3|_:) - -
their new decisions, the business experts write documents to give to the programmers and
testers. Similarly, the programmers create documents to hand to the testers.”

o --Alistair Cockburn, Agile Software Development 2" Edition
O Practices Alias describes to avoid pipelining

Past: "..most designs had to be tweaked slightly because of technical implementation problems,
and the usability tests did not show us how the features would interact with one another.”

o Design team moves ahead designing for future iterations, but:
= makes themselves unavailable for collaboration on the current iteration, and
= fails to evaluate and incorporate feedback from historic iterations

Present: “..the interaction designers would work daily with the developers once implementation
started to answer questions and solve problems that arose from issues with implementation”

Future: "Designs were not just "thrown over the wall" to the developers. Through the daily
scrums and interface presentations, the developers had followed the design's progression
throughout the last cycle.”

-- Lynn Miller, Alias, Case Study of Customer Input For a Successful Product

ThoughtWorks

The art of heavy lifting™

The Elephant In The Room:
Design or Requirements?

O User Centered Design, Interaction Design, Usability, and Business Analysis and
Requirements Gathering are silo-ed activities

O Duplication of data gathering and modeling efforts
o User interviews
o Business stakeholder interviews
0 Business process modeling
o Task analysis
o UI prototyping

a Bhusinehss stakeholders that detect the duplication often choose to omit one group or
the other

O Usability as an overlooked non-functional requirement
O Fundamental difference in responsibility, attitude, posture of two disciplines:
o designing vs. capturing and managing

“This is classic user interface (UI) design, and it is the orphan child of software
development methodologies. Is it design? Is it analysis? Does a requirements
specification include the UI or does it not? No one seems quite sure.”

-- Beyer, Holtzblatt, & Baker, An Agile User-Centered Method: Rapid Contextual Design
0 Agile Software Development doesn’t remedy this fundamental confusion

109

Jeff Patton, jpatton@thoughtworks.com 137

Bringing User-Centered Design Practices into Agile Development Projects

Notes

ThoughtWorks:

The art of heavy lifting:

Part 4 Agile Tips For Ux Practitioners

15. Use reflective process improvement: to alter your process
after reviewing your product quality and progress relative to your
plan

16. Increase the frequency and timing of end user
involvement: build a ready supply of users and user surrogates
inside and outside of your organization to leverage continuously

17. Avoid pipelining by working in the past, present, and
future: keep collaboration, feedback, and product adaptation high
between all team members

18. Build a holistic process: that includes business analysis,
interaction design and usability, development, and testing as one
team rather than silo-ed disciplines

110

ThoughtWorks:

Tne art of heavy liftng™

Bringing
User-Centered

Design Practices
into

Agile Deve
Projects

P PEA o

jpatton @thoughtworks.cd\ﬁn

£

Jeff Patton, jpatton@thoughtworks.com 138

