[M31]

Improving On Agility:

Adding Usage-Centered Design to a
Typical Agile Software Development
Environment

Jeff Patton

Abstract

This paper describes, at a high level, the incremental development cycle
typical of an agile software development environment, and how adding
Usage-Centered Design will help this process run smoother. Specific
points of applicability during the incremental development cycle are
pointed out, along with the specific U-CD technique to apply there. The
paper assumes a basic knowledge of agile software development and
Usage-Centered Design.

Introduction

This paper describes, at a high level, the incremental development cycle
typical of an agile software development environment, and how adding
Usage-Centered Design will help this process run smoother.

Your mileage may vary

In this paper you'll find recommendations based upon the ways I've
practiced Usage-Centered Design and the observations I've made while
doing so. Fundamentally, agile development methodologies acknowledge
the strong influence individuals and their talents have on any development
process. The first of the four agile values emphasizes; “Individuals and

Patton: Improving On Agility with Usage-Centered Design 1

interactions over processes and tools.” (Agile Alliance, 2001) [Ill
encourage you to try the specific recommendations given here. I'll also
expect you to be alert for additional opportunities or challenges presented
by your particular environment.

Usage-Centered Design

This paper assumes some knowledge of Constantine & Lockwood’s Usage-
Centered Design (Constantine & Lockwood, 1999). U-CD is a broad topic
and the specific practice of U-CD can and should vary from organization to
organization. For the purpose of this paper I'll summarize the U-CD
workflow like this:

¢ |dentify User Roles & Build a Role Model

¢ |dentify Tasks Roles Perform & Build a Task Model

e Using the Task Model, Identify Interaction Contexts & Build a
Navigation Map

e Write Essential Use Cases for Each Task

e Using Canonical Components, Build Abstract User Interface from
Each EUC

e Draw Wireframe User Interface From Abstract User Interface

The Agile Methodology Isn’t

It's important to underscore one particular point: agile software
development isn’t a specific methodology. The Agile Manifesto describes
four basic values and 12 principles that generally describe methodologies
that are agile. Use these values and principles to evaluate a specific
methodology.

There are many specific methodologies that can be described as agile,
most notably Extreme Programming (Beck, 1999). Other documented
agile methodologies include Scrum (Schwaber and Beedle, 2000), FDD
(Coad, LeFebvre & DelLuca, 1999), and Crystal (Cockburn). But, even
more common than the documented methodologies are those
organizations that build their own methodologies while consciously being
mindful of agile principles.

When determining if a methodology is agile, | find that | have to use the
pornography rule as quoted by Supreme Court justice Potter in 1964: “|
can’t define pornography, but | know it when | see it.” The same seems to
be true of agile development methodologies. Understand agile values and
when looking at an agile methodology, you’ll know it.

2 Patton: Improving On Agility with Usage-Centered Design

Typical Agile Incremental Development Cycle

XP has iterations and releases. Scrum has sprints. FDD has ?s. But
generally speaking, agile methodologies develop software incrementally.

“There is no substitute for rapid feedback, both on the product and the
development process itself. Incremental development is perfect for
providing feedback points” says Alistair Cockburn in Agile Software
Development (Cockburn, 2001). Whatever the agile methodology
followed, documented or not, you’ll generally find software development
broken down into increments as short as a week and as long as several
months with the “sweet spot” being about a month.

The Anatomy of an Increment:

Feature List

Evaluate
Incremen

oment

Figure 1 - An Increment

An increment looks somewhat like Figure 1. The flow starts with planning
resulting in a feature list. Given a feature list those participating in the
increment can proceed to design, develop, and evaluate each feature. At
the end of the increment, all completed features are integrated and the
increment evaluated as a whole. At this time those evaluating the
software may choose to release it into a more formal acceptance test
environment or into a production environment. If there’s more software to

Patton: Improving On Agility with Usage-Centered Design 3

develop, another increment is started with increment planning. What
follows are more detailed definitions for the parts of the increment.

Planning

Increment planning is generally done collaboratively. ldeally the plan will
be built by developers, customers, and stakeholders. The resulting
increment plan lists a number of features that you can reasonably expect
to be completed during the increment. Often, planning sessions include
an element of high level requirements gathering and/or simple design to
arrive at or understand software features.

The Feature

Most popular agile methodologies label the work to be developed.
Extreme Programming describes a user story. Scrum describes a backlog
of backlog items. FDD describes parking lots of features. Regardless of
the terminology these items of work that I'll call “features” have a few
things in common.

Shared Understanding

The features are described in a way that is understandable by the
developers building the feature and the customer, user, or business
person requesting it. This shared understanding is arrived at through
collaboration between developer and the feature’s sponsor. Shared
understanding implies that developer and feature sponsor can agree
when the feature is completed. This understanding of completeness
might be expressed as an acceptance test, manual or automatic, that
we can run to validate that the feature performs as required.

Business Value

The features have some sense of business value. This value may be
expressed through a sophisticated model for determining ROI, or just
with a subjective label of “high,” “medium,” or “low,” or any variation in
between.

Cost
Developers building the feature and testers validating it are able to
estimate, however coarsely, the time it will take to do so.

4 Patton: Improving On Agility with Usage-Centered Design

The Feature List
Given the shared understanding, business value, and cost of a feature,
features can be labeled and prioritized. Generally speaking, agile

methods attempt to build highest priority features first, and a prioritized
list of features is critical to doing so.

Designing

Detailed design of a feature generally occurs during a particular
increment. Ideally design is a collaborative activity that involves
customers, users, or stakeholders along with developers. Methodologies
such as Extreme Programming require a customer be on site with the
development team to help with this design.

Developing

It’'s common for agile methodologies to place a particular emphasis on the
quality of developed software. Extreme Programming requires that
software be developed by programmers working in pairs, and that code is
supported by automated unit tests. Whatever the methodology, the
developed feature is expected to be completed and tested at the end of
the increment, so quality should be high enough for this feature to be
released into production.

Evaluating

As features are built, testers or customer representatives evaluate them to
determine if they're acceptable. At the end of an increment, all completed
features are reviewed together to evaluate the status of the software as a
whole.

Agility Isn’t About Speed

A common misconception of agile software development methodologies is
that they are rapid development methodologies. Incremental
development gives those running a software development project the
ability to evaluate the position of the software as it currently is and:

e release it

® add, change, or remove features

e cancel the project

Agility is about having the ability to respond to change quickly. Often this
translates into faster development speed. But, not always.

Patton: Improving On Agility with Usage-Centered Design 5

Increment to Release

In agile methodologies such as Extreme Programming, there’'s a
preference for short increments of 1-3 weeks. These shorter “iterations”
give more frequent opportunities to gauge development performance,
evaluate the current state of the product, and adjust features and priority.
It may be difficult in this short of a duration to build a set of features
complete enough to be placed into use by actual end-users. In situations
such as this, it's helpful to package several small increments into a
software release.

When releases are used, a release plan is constructed to indicate the
features that will appear in the release. The number and length of
increments for the release is decided. Then plans are constructed for
each individual increment. It's common for the evaluations at the end of
increments to result in adjustments to the release plan. The evaluation of
the final increment in the release then rolls into the evaluation of the
release as a whole.

Plan
Release :
’ Feature List

Evaluate
Release

“

Release

Plan

. ncremen
Evaluate
Incremen

€ men{‘

Evaluate
Feature

Developk

Featu _Feature

Figure 2 - Release with Increments

Figure 2 shows what a release might look like. A release can be thought of
as a bundle of increments. Feature development cycles within an
increment. Increments cycle within a release. It's easy to extend this
concept to a project level where a project may cycle through multiple
releases. A very large project may contain multiple smaller projects, each
with their own incremental development cycle.

6 Patton: Improving On Agility with Usage-Centered Design

Inserting Usage-Centered Design

This is Tough Stuff

The basics of incremental development are simple enough. However, at
every part of the incremental cycle, there are difficult design decisions to
address and difficult scope trade-offs to make. Agility isn’t for amateurs.
It takes experience and skill to plan, design, develop, and evaluate a
growing piece of software. This is where Usage-Centered Design offers
valuable practices and insights.

| Collaborative U-CD Session |

Reconcile Roles & Goals With Tasks
Then Features

Role & Task Determine Feature
Priority

Role & Task Information Drive
Feature Design

Evaluate
Incremen

Use Feature Priority and Cost to
Find Scope Cutting Opportunities

Role & Task Information Determine
Bug Criticality

Test Using Essential Use Cases
Assuming A User Role

Figure 3 - Release with Increments and Insertion Points for Usage-
Centered Design

Figure 3 points out the insertion points for Usage-Centered Design and
specific U-CD technigues to apply at that point in the incremental
development cycle. The remainder of this paper addresses these insertion
points in the form of a problem statement followed by a potential solution
using Usage-Centered design. Figure 3 calls out these solutions and the
specific point in the incremental development cycle where they might most

likely apply.

Patton: Improving On Agility with Usage-Centered Design

Apply U-CD When the Following Questions Arise:

What Exactly Are We Building Here?

When determining the features to build for a piece of software, it's
valuable to involve users, domain experts, stakeholders, programmers,
testers, and anyone else with information or experience that could benefit
the project. However, once we assemble all those critical people, how
exactly do we make best use of their time?

Collaborative U-CD Design Session
Use Usage-Centered Design as a process framework to facilitate
collaborative design sessions.

Usage-Centered Design works particularly well as a process framework to
facilitate a collaborative requirements gathering, designing, and planning
session. Card based techniques are easy to learn and effectively engage
everyone. The basic steps of U-CD can be run through as quickly as a
couple hours or the session can be extended to several days depending on
the size of the software under consideration.

A collaborative U-CD session goes a little like this:

e Sequester a diverse group of participants with the goal to
determine the feature list for the software project or release, and
from this feature list build a plan for one or more increments. This
group should include developers, testers, customers, end-users,
domain experts, and stakeholders. I've found the optimal size of
the group is 6-10 people. Given that this is a small number,
choose participants that can effectively represent their discipline as
well as those who will be actively involved with the development,
installation, or eventual use of the software.

e Build U-CD role and task models using 3x5 card sorting techniques.
It's particularly important to identify the goals for each role and
focal roles within the group of identified roles. For tasks, it's
particularly important to identify the frequency the task is
performed, the criticality of the task, and the subset of tasks that
are focal tasks.

e From the task model, identify interaction contexts.

e From interaction contexts and tasks, identify software features.
Often tasks directly translate to features.

Patton: Improving On Agility with Usage-Centered Design

® For each feature, derive value from the roles that will use the
feature and task or tasks it automates. For each feature, have the
developers in the room give a rough estimate of development time.

e Sort features by their value. Plan the next increment based on the
time estimates given for each feature.

Figure 4 - A Collaborative U-CD Session effectively engages a diverse
group of people in designing and planning.

Patton: Improving On Agility with Usage-Centered Design 9

10

How Do | Determine the Priority of This Feature?

You've identified a feature you know your software needs and you believe
it's pretty important. How do you determine exactly how important?
Based on what can you make that determination? You have multiple
features to develop and you need to determine one feature’s priority
relative to another’s. Exactly how can you do that?

Role and Task Priority Determine Feature Priority

To aid in determining feature priority, use details about the user
role that benefits from this feature and the task or tasks that this
feature automates.

U-CD’s concept of focal role is important to determining priority. Features
for focal roles generally have high value to the product and consequently
high priority. Focal tasks are also indicators of high priority. If a feature is
used by a focal role to engage in a focal task, the feature is likely critical to
the software and will have a highest possible priority.

Beyond knowing what roles and tasks are focal, details about tasks
also provide important clues to feature priority. Tasks that are performed
at a high frequency are higher priority than those that aren’t. Tasks that
deliver high value to the business or that carry high risks when not
performed correctly are high priority.

In practice, when a feature is supported by its known roles and tasks,
assessing its priority relative to other tasks is usually easy.

Patton: Improving On Agility with Usage-Centered Design

How Can | Be Reasonably Sure | Found All The Important Features?

You've identified a list of features your software needs to have. You have
a limited amount of time to develop this software before delivery is
required and neglecting an urgent feature could be catastrophic. How can
you be reasonably sure you haven’t neglected an important feature?

Reconcile Roles and Goals with Tasks Then Features

Using your user role model, make sure each real-world person you
can think of is identified by a role in your role model. For each goal
associated with each role, make sure a task exists to help the
person in this role achieve that goal. Make sure each task is
automated by a feature.

Look back at the user role model you’'ve prepared. The user represents an
abstract role and goal that the real-world person might step into when
using the software. Compare the user roles you’ve identified to the real-
world people you believe will be using the software you create. Are all
people identified by one or more role in the role model?

Look back at the task model. For the goals of each role identified,
make sure tasks are identified in the task model that help the role fulfill
their goal.

For each task, make sure it's automated by a product feature.

Reconsidering user roles, their goals, and tasks goes a long way
toward gaining confidence that the software scope is as complete as it can
be, knowing what we know. While no approach is perfect, I've observed
this approach yields better results than others I've tried. Pay special
attention to focal roles and tasks. If by chance some person or process
was overlooked, there’s a bit of comfort in knowing that it isn’t one of the
most critical people or activities represented by these focal roles and
tasks.

Patton: Improving On Agility with Usage-Centered Design

11

12

What Should The User-Interface Look Like For This Feature?

You've identified a feature that needs to be developed. You know the user
role it serves and the task or tasks it automates. Exactly how do we
determine how this feature looks or behaves in the software? How much
development time is it appropriate to spend making this feature behave
smoothly?

Role and Task Information Drive Feature Design

Use Essential Use Cases to describe the interaction between the
system and user role. Derive software behavior from this. Use the
user role information to determine specific interaction details. Use
what we know about the user role’s skills and experience along
with what we know about the tasks frequency and criticality to
determine the appropriate amount of rigor to apply to
development.

For each task write an essential use case. This is best done
collaboratively involving a domain expert and developer. Use the process
described in “From Abstract to Realization in User Interface Designs:
Abstract Prototypes Based on Canonical Abstract Components”
(Constantine, Windl, Noble, & Lockwood, 2000). Extract canonical
components from the essential use case. Combine these canonical
components into an abstract user interface. From the abstract user
interface, render a rough wireframe user interface. Proceed to
development.

This process need not be deferred until immediately before
development. Designing user interface for focal roles or focal tasks is
particularly critical. So, an approach of prototyping and testing the
effectiveness of the proposed user interface is appropriate. Conversely,
tasks that or performed infrequently by roles that are of low priority may be
designed quickly and simply. For tasks such as these, you may elect to
skip this process.

Patton: Improving On Agility with Usage-Centered Design

How Do | Go About Testing This Software?

Development of a particular feature is complete. We want to be sure the
software is tested thoroughly and meaningfully. We don’t have time to test
every variation of usage. How can we most effectively test the software?

Test Using Essential Use Cases Assuming a User Role

For the tasks implemented in the feature, write test cases using
the essential use case for the task. While testing, assume the
computer skills and domain knowledge of the role performing the
task. Confirm the task helps the role reach his or her goal.

Essential use cases provide the framework to write literal test cases. In
practice, | find an experienced tester can derive test cases on the fly using
an essential use case as reference. The tester tries to understand the
environmental context the task is being performed in. Noisy, distracting,
or time-constrained situations place unusual demands on the user and
testing should take this into account. Also, take into account the
frequency the task is performed. Users will gain expertise at repetitive
tasks and be intolerant of extra keystrokes. However, infrequently
performed tasks may require an extra-helpful user interface to aid the user
with the details of performing the task correctly.

It's important the tester is familiar with the role or roles who will be
performing the tasks in the feature. The tester needs to understand and
assume the skills of the role performing the task. If multiple roles perform
the task, evaluate the task from each role’s perspective. Does the task
being performed make sense in the context of the goal held by the user
performing it?

| find that testers appreciate the opportunity to understand the context
the software they're testing will be used in. It simplifies their job of testing
to know what the goals of the actual user at the keyboard are. I've
observed instances where testers didn't understand the goals of the
person using the software and it resulted in bug-free software that was
useless to its end user.

Patton: Improving On Agility with Usage-Centered Design

13

14

I've Identified a Minor Bug In A Finished Feature, Does It Need to Be
Fixed?

During testing you’ve identified what looks like a minor issue with the
software. The business process can still be performed dependably. The
bug only occurs in some rare circumstances and during those
circumstances the bug can be worked around. How do you determine the
criticality of this bug?

Role & Task Information Determine Bug Criticality
Use what we know about the role or roles using this feature to
assess those roles’ tolerance for issues in the software. Use what
we know about the tasks this feature automates to determine the
risks if this task is not performed correctly.

Will the user performing in the role using this feature be tolerant of minor
errors? If the user role performing the function is a skilled computer user,
they may understand and tolerate minor idiosyncrasies in behavior. Less
skilled users may not recognize idiosyncrasies as such.

If the task being performed occurs in a time constrained situation, or if
the risks of incorrectly performing this task are great, then there’s little or
no tolerance for minor issues with the software. On the other hand, if the
task is performed infrequently, time isn’t constrained while the task is
performed, and recovery is trivial, you may consider letting the issue go
unresolved.

Some may consider it shocking to allow any known software issue to
go unresolved. However, I've found it common to have to make such
decisions as a hard delivery date draws near. It's generally not a question
of fixing this issue or not, rather it’s a question of fixing this issue or that.
In situations where you have to choose, the supporting role and task
information in U-CD give valuable information for making these trade-offs.

Patton: Improving On Agility with Usage-Centered Design

We’re Nearing the Delivery Date For The Software And We Won't Finish
On Time!

You've completed several successful iterations and can gauge by your
past performance that your team can’t possibly finish all the features in
time for the promised delivery date. The date is fixed and end-users are
counting on the new software being in place. You must deliver on time
and cutting scope seems to be the only way to do so. How can you cut
scope with minimal impact on the software?

Use Feature Priority and Cost to Find Scope Cutting Opportunities

For each feature, use role and task information to determine
priority. For features with low priority and high development times,
look for alternative design approaches to reduce development
time. Alternatively, look for low priority features that can be
removed from the project to be replaced with manual processes.

If increment plans were constructed such that highest priority features
were designed and developed first, by the time you understand that the
delivery date might be missed, the most critical features will have been
developed. If you've developed a good sense of feature priority using user
roles and task information, you'll find features that appear out of balance
- features with low priority that take a long time to develop. This is where
to look for opportunity.
Look at changing the user interaction to reduce development time
while still meeting user goals. For example:
* interactive graphic user interface may be converted to command
line tools
® interactive query user interface may be converted to a static report
e complex stand-alone computer process might be replaced with a
paper process.

No matter what the approach, feature priority taken with estimated
development time illuminates options for scope reduction. In practice I've
found that when customers are made aware of development time
constraints, and are given opportunity to collaborate on solutions to

problems, very creative and pragmatic design approaches can arise.

Patton: Improving On Agility with Usage-Centered Design

15

16

Wrapping Up

Agile methodologies use incremental development to create flexibility
when developing software. General functional design decision are initially
made and described in the form of features to release at the end of one or
more development increments. Increments start with a plan composed of
a list of features to complete during the increment, and end with an
evaluation of all features actually completed during the increment. Often,
detailed design decisions are deferred until an increment starts and
development is about to take place.

Usage-Centered Design techniques help all involved in the design,
development, and testing of the software to understand critical
information about the features they’re working with. U-CD techniques are
particularly applicable at specific, critical times of the incremental
development cycle. | believe that adding U-CD to an agile development
process helps simplify things at these critical times and greatly increases
the likelihood of project success.

References

Agile Alliance, (2001) The Agile Manifesto, http://www.agilemanifesto.org/.

Beck, K., (1999) Extreme Programming Explained, Addison-Wesley

Coad, P., LeFebvre, E., & Deluca, J. (1999) Java Modeling in Color with UML, Prentice
Hall.

Cockburn, A., Crystal Methodologies, http://www.crystalmethodologies.org/,

Cockburn, A., (2001) Agile Software Development, Addison-Wesley.

Constantine, L., and Lockwood, L., (1999) Software for Use: A Practical Guide to the
Models and Methods of Usage Centered Design. Reading, MA: Addison-Wesley.

Constantine, L., Windl, H., Noble, J., & Lockwood, L., (2000) From Abstract to Realization
in User Interface Designs: Abstract Prototypes Based on Canonical Abstract
Components, http://www.foruse.com/Files/Papers/canonical.pdf.

Schwaber K., and Beedle, M., (2000) Agile Software Development with Scrum, Prentice
Hall.

Patton: Improving On Agility with Usage-Centered Design

